

IO 驱动

使用手册

中控技术股份有限公司

声 明

严禁转载本手册的部分或全部内容。

在不经预告和联系的情况下,本手册的内容有可能发生变更,请谅解。

本手册所记载的内容,不排除有误记或遗漏的可能性。如对本手册内容有疑问,请与我公司联

系,联系邮箱: SMS@supcon.com。

商 标

中控、SUPCON、PLANTMATE、AI-POET、InPlant、dOps、ESP-iSYS、Webfield、ics、MultiF、SupField、APC等均是中控技术股份有限公司注册商标,拥有商标的所有权。未经中控技术股份有限公司的书面授权,任何个人及企业不得擅自使用上述商标。对于非法使用我司商标的行为,我司将保留依法追究行为人及企业的法律责任的权利。

	文档标志符定义
\land	警告: 标示有可能导致人身伤亡或设备损坏的信息。
	WARNING: Indicates information that a potentially hazardous situation
	which, if not avoided, could result in serious injury or death.
	电击危险: 标示有可能产生电击危险的信息。
$\overline{7}$	RISK OF ELECTRICAL SHOCK: Indicates information that Potential shock hazard
	where HAZARDOUS LIVE voltages greater than 30V RMS, 42.4V peak, or 60V DC
	may be accessible.
	防止静电:标示防止静电损坏设备的信息。
	ESD HAZARD: Indicates information that Danger of an electro-static discharge
	to which equipment may be sensitive. Observe precautions for handling
	electrostatic sensitive devices
	注意 :提醒需要特别注意的信息。
	ATTENTION: Identifies information that requires special consideration.
र् ज्ञ	提示 :标记对用户的建议或提示。
	TIP: Identifies advice or hints for the user.

1 - 4冊7 5-45	1
Ⅰ	1
2 Memory 继勾	1
2.1 Memory 仿具位号说明	1
3 OPC DA 继动	4
3.1 配置驱动	4
3.2 配置驱动位号的I/O地址	
4 Modbus RTU驱动	
4.1 配置驱动	
4.2 在线调试驱动	
4.3 配置驱动位号的I/O地址	
4.4 参数说明	
4.5 注意事项	
5 Modbus TCP驱动	
5.1 配置驱动	
5.2 在线调试驱动	23
5.3 配置驱动位号的I/O地址	
5.4 参数说明	
5.5 数据字节序说明	
5.6 注意事项	
6 IEC104 Master驱动	
6.1 配置驱动	
6.2 导入从站位号清单	
6.3 在线调试驱动	
6.4 配置驱动位号的I/O地址	
7 GCS驱动	32
71 配置驱动	32
7.1 配置驱动位号的I/O地址	37
7.2 电重视功应 9100地址	38
8 1 配 置取为	
0.1 <u>电重</u> 泡勾	
0.2 山山池幼世 5 円1/0地址	
2 0 1 配要应动	
7.1 削重地列	
9.2 距直驱列亚方的I/O地址	
10 TCS-900 驱动	
10.1 配置 驱动	

目 录

10.2 配置驱动位号的I/O地址	
11 Trusted Modbus TCP驱动	51
11.1 配置驱动	51
11.2 配置驱动位号的I/O地址	
11.3 参数说明	
12 NodeSniffer驱动	
13 ABCONTROLLOGIX驱动	
13.1 配置驱动	
13.2 配置驱动位号的I/O地址	
14 SNMP驱动	
14.1 设备中如何配置SNMP服务	
14.2 配置驱动	
14.3 配置驱动位号的I/O地址	
15 SUPCON Collector驱动	
15.1 配置驱动	
15.1.1 TCP通信配置	
15.1.2 UDP通信配置	
15.2 配置驱动位号的I/O地址	74
16 Siemens S7 驱动	
16.1 配置驱动	
16.2 配置驱动位号的I/O地址	
17 Siemens FetchWrite驱动	
17.1 配置驱动	
17.2 转换位号清单列表	
17.3 配置驱动位号的I/O地址	
18 ModbusTCPSlave驱动	
18.1 配置驱动	
18.2 配置驱动位号的I/O地址	
19 DNP3 驱动	
19.1 配置驱动	
19.2 配置驱动位号的I/O地址	
20 Modbus RTU Plus驱动	
20.1 配置驱动	
20.2 配置驱动位号的I/O地址	91
20.3 参数说明	
21 MELSEC驱动	
21.1 配置驱动	

21.2 配置驱动位号的I/O地址	
21.3 参数说明	
22 TCS-500 驱动	
22.1 配置驱动	
22.2 配置驱动位号的I/O地址	
23 OPC UA驱动	
23.1 配置驱动	
23.2 配置驱动位号的I/O地址	
24 MQTT驱动	
24.1 配置驱动	
24.2 配置驱动位号的I/O地址	
24.3 参数说明	
25 DLT645_2007 驱动	
25.1 配置驱动	
25.2 配置驱动位号的I/O地址	
25.2.1 配置步骤	
25.2.2 自定义参数	
25.2.3 配置结果	
26 位号过滤	
27 资料版本说明	

I/O 驱动

1 概述

I/O 驱动用于将符合标准协议的 IO 数据或者第三方系统的 IO 数据接入 InPlant SCADA 软件或 中控数据采集器中。本手册说明各个驱动及其位号的配置说明。

驱动导入的位号若包含某些特殊符号,如\$等,则系统可能提示其无法成功导入,请手动添加这些 位号。

2 Memory 驱动

提示:

Memory 驱动提供系统内存位号,包括两大类数据点:"非仿真位号"和"仿真位号"。

非仿真位号

内存位号不会自动变化,支持各种数据类型,可对其进行读写操作。在数据库管理软件中添加相关 位号时,I/O 地址必须为空。

仿真位号

仿真位号按照各自的变化规律自动变化。在数据库管理软件中配置仿真位号时,需要设置的I/O地址可直接参考表 2-1。如:设置一个正弦变量,且相位为0,则该位号的I/O地址可以设置为A。

2.1 Memory仿真位号说明

Memory 位号添加方法与其他位号的添加方法相同,在 I/O 地址一栏,可选择添加仿真位号,仿 真位号类型如下所示。

仿真位号	I/O 地址	说明	数值范围	缺省值	权限
	А	正弦(相移 0°)仿真值		0	只读
	AE	A 寄存器的使能, ON: Enable; OFF: Disable	ON,OFF	ON	读写
正弦(相 移 0°)	AH	A 寄存器的数据上限(百分数),如 90 表示量 程的 90% 0-100		100	读写
	AL	A 寄存器的数据下限(百分数),如 20 表示量 程的 20%	0-100	0	读写
	AW	A 寄存器的正弦宽度(W 数值越大,A 周期越短)	1-1200	60	读写
正弦(相	В	正弦(相移 90°)仿真值		0	只读
移 90°) BE		B 寄存器的使能, ON: Enable; OFF: Disable	ON,OFF	ON	读写

表 2-1 仿真位号类型表

仿真位号	I/O 地址	说明	数值范围	缺省值	权限
	ВН	B 寄存器的数据上限(百分数),如 90 表示量 程的 90%	0-100	100	读写
	BL	B 寄存器的数据下限(百分数),如 20 表示量 程的 20%	0-100	0	读写
	BW	B 寄存器的正弦宽度(W 数值越大, B 周期越短)	1-1200	60	读写
	С	正弦(相移 180°)仿真值		0	只读
	CE	C 寄存器的使能, ON: Enable; OFF: Disable	ON,OFF	ON	读写
正弦(相 移 180°)	СН	C 寄存器的数据上限(百分数),如 90 表示量 程的 90%	0-100	100	读写
100)	CL	C 寄存器的数据下限(百分数),如 20 表示量 程的 20%	0-100	0	读写
	CW	C寄存器的正弦宽度(W数值越大,C周期越短)	1-1200	60	读写
	D	正弦(相移 270°)仿真值		0	只读
	DE	D 寄存器的使能, ON: Enable; OFF: Disable	ON,OFF	ON	读写
正弦(相 移 270°)	DH	D 寄存器的数据上限(百分数),如 90 表示量 程的 90%	0-100	100	读写
· [3 2/0)	DL	D 寄存器的数据下限(百分数),如 20 表示量 程的 20%	0-100	0	读写
	DW	D 寄存器的正弦宽度(W 数值越大,D 周期越短)	1-1200	60	读写
总体使能	Е	E 所有仿真位号的使能,ON: 仿真;OFF: 停止仿 真		ON	读写
	F	方波仿真值		0	只读
	FE	F寄存器的使能, ON: Enable; OFF: Disable	ON,OFF	ON	读写
亡证	FH	F 寄存器的数据上限(百分数),如 90 表示量程的 90%	0-100	75	读写
73 02	FL	F 寄存器的数据下限(百分数),如 20 表示量程的 20%	0-100	25	读写
	FW1	F寄存器的上沿宽度	1	10	读写
	FW2	F寄存器的下沿宽度	1	10	读写
	G	锯齿波仿真值		0	只读
	GE	G 寄存器的使能, ON: Enable; OFF: Disable	ON,OFF	ON	读写
锯齿波	GH	G 寄存器的数据上限(百分数),如 90 表示量 程的 90%	0-100	100	读写
	GL	G 寄存器的数据下限(百分数),如 20 表示量 程的 20%	0-100	0	读写
	GW	G 寄存器的宽度(W 数值越大,G 斜率越小,越 平坦)	1	10	读写
	GS	锯齿方向, ON: 正三角;OFF: 倒三角	ON,OFF	ON	读写

仿真位号	I/O 地址	说明	数值范围	缺省值	权限
累加计数	L	累加计数器仿真值 (每周期累加 20)	0-65535	0	只读
器	LE	L 寄存器的使能, ON: Enable; OFF: Disable	ON,OFF	ON	读写
勝加计数 提 器 LE しE の のE の R RE 随机数 RH		开关量仿真值, ON->OFF: 8 周期;OFF->ON: 2 周期	ON,OFF	ON	只读
		O 寄存器的使能, ON: Enable; OFF: Disable	ON,OFF	ON	读写
R		随机数仿真值		0	只读
	RE	R 寄存器的使能, ON: Enable; OFF: Disable	ON,OFF	ON	读写
随机数	RH	R 寄存器的数据上限(百分数),如 90 表示量 程的 90%	0-100	85	读写
	RL	R 寄存器的数据下限(百分数),如 20 表示量 程的 20%	0-100	15	读写
	S	三角波仿真值		0	只读
	SE	S 寄存器的使能, ON: Enable; OFF: Disable	ON,OFF	ON	读写
三角波	SH	S 寄存器的数据上限(百分数),如 90 表示量程的 90%	0-100	75	读写
	SL	S 寄存器的数据下限(百分数),如 20 表示量程的 20%	0-100	25	读写
	SW	S 寄存器的正弦宽度(W 数值越小, S 周期越短)	1	24	读写
字符串	 字符串仿真值,每周期按以下顺序变化 "ECS-700", "SUPCON", "China", "control system", "new technologies", "microprocessor", "communication and network", "excellent spirit", "a leader in making DCS in China" 		"ECS-700", "SUPCON", "China", "control system", "new technologies", "microprocessor", "communication and network", "excellent spirit", "a leader in making DCS in China"		只读
	TE	T 寄存器的使能, ON: Enable; OFF: Disable	ON,OFF	ON	读写
移位计数	Y	移位计数器仿真值, 1< <n td="" 移位<=""><td>0x0001~0x8000</td><td>1</td><td>只读</td></n>	0x0001~0x8000	1	只读
器	YE	Y 寄存器的使能, ON: Enable; OFF: Disable	ON,OFF	ON	读写
振荡哭	Z	振荡器仿真值,正数-负数振荡变化。如 4,-4 此振荡器的值可改		4	读写
抓汤菇	ZE	Z 寄存器的使能, ON: Enable; OFF: Disable	ON,OFF	ON	读写
	ZW	振荡延时时间(周期)	1	2	读写

3 OPC DA驱动

OPC DA 作为一项面向工业过程控制的数据交互软件技术,它提供了一种在数据源与客户端之间进行实时数据传输的通讯机制。它可以轻松地实现异构系统的互联。

进行 OPC DA 驱动配置前,首先需进行 DCOM 配置。DCOM 的详细配置方法请参见《DCOM 配置手册》。

3.1 配置驱动

添加 OPC DA 驱动并安装 OPC Server 后,可以通过以下步骤配置 OPC DA 驱动。

1.	"OPC DA驱动配置"	如图	3-1 所示。	
----	--------------	----	---------	--

OPC DA驱动配置 文件(R) 编辑(R)		X
	服务器(位号)	
		[#
	周性 尼冬季首体信白	
	服务器个数	0

图 3-1 OPC 服务器选择对话框

2. 左键单击 ③或者单击菜单栏【编辑/添加服务器】,弹出如图 3-2 所示的"选择OPC DA服务器" 对话框。

选择OPC DA服务 ×
服务器名称:
服务器路径:
节点名("\\server" 或者 "server" 或者 "www.server.com")
■刷新
□ 匿名登录
用户名
密码 🗌 显示密码
过滤条件(包含TAG的位号: *TAG*)
可用OPC DA服务: 〇 1.0 〇 2.0
SUPCON.GCSServer.1 (SUPCON.GCSServer)
SUPCON.VxHistorian.1 (SUPCON.VxHistorian)
确定 取消

图 3-2 OPC 服务器选择对话框

 填写服务器名称,并在"可用 OPC DA 服务"中选择一个 OPC DA 服务器。"节点名"中可输入 其他计算机的 IP 地址或域名,输入用于连接远端 OPC 服务的用户名和密码后,点击"刷新" 即可显示该主机上的服务器。

如果远端 OPC 服务的账户信息和本机一致,可勾选"匿名登录",无需输入用户名和密码。

4. 单击"确定",返回到如图 3-3 所示"OPC DA驱动配置"界面。

OPC DA ABB_AC800MC_STN13	服务	5器 位号		
	属性	ŧ	值	
		服务器配置		
		服务器名	ABB_AC800MC_STN13	
		服务器地址	ABB. AC800MC_OPCDASERVER. 3@10. 17. 80. 135	
		时间源	本地时间	
		断线重连	始终重连	
		重连间隔(秒)	30	
		设备读写状态	读写	
		延迟请求(秒)	5	
		过滤条件		
		更新速率(ms)	1000	
		批量位号订阅数量(个)	1000	
		服务器冗余	是	
		冗余服务器地址	SUPCON. VXSCADA. 1	

图 3-3 添加 OPC 驱动后的 OPC 服务器选择对话框

5. 在配置界面"服务器"页签,可以更改服务器名、设置断线后是否重连以及重连的方式和时间 间隔等。

表	3-1	服务器参数说明	月

参数名	含义	说明
服务器名	服务器名称	 名称由英文字母、数字、-、_、、@组成,最长128个字节 名称不能重复
服务器地址	服务器地址	服务器地址由服务器名.OPC 属性@所在计算机 IP 地址(或域名)
时间源	数据更新使用的时间戳	 不能修改 为 OPC 服务器时间或本地时间
断线重连	OPC Client 和 OPC Server 断线时的重连模 式	断线重连:只在 OPC 服务器异常断开连接时重连 始终不重连:OPC 服务器断开连接后不重连 始终重连:在 OPC 服务器异常断开,或正常退出的情况下都重连
重连间隔	两次重连间的时间间隔	可选择 30、60、120、300、600, 单位为秒
设备读写状态	设置设备位号的读写模 式	根据此设置,设备中的位号可统一设置成只读或读写状态
延迟请求	延迟请求时间	用于控制 OPC 服务器连接建立后,首次向设备发起请求的延迟(1~3600s)
过滤条件	位号的过滤条件	显示选择服务器时所设置的值,可更改
更新速率(ms)	位号值的更新速率	配置更新速率,范围(100~1000)ms
批量位号订阅 数量(个)	订阅位号的个数	位号重新订阅期间一次性最大订阅个数,1~3000个
服务器冗余	服务器冗余	如果要使用冗余服务器,请开启断线重连功能,保证主服务器正常运行,并保证冗余服务器上的位号组态与主服务器保持一致

参数名	含义	说明
冗余服务器地 址	冗余服务器地址	 启用服务器冗余时可以修改 地址格式与服务器地址保持一致:服务器名.OPC 属性@所在计算机 IP 地址(或域名)

提示:

OPC DA 驱动组态功能不支持服务器冗余。

 在"位号"页签中选择需要导入的位号,表首行中输入过滤信息后,可过滤出相关位号,详见位 号过滤章节;单击"清除过滤"按钮,清除过滤条件,列表显示所有位号。选中位号,右键菜 单中可以更改位号的数据类型。

小匹挡	脅位号: 7140		已选择位号: 0
	名称	类型	IO地址
在	7)	☑ 在此处输入	· 🔽 在此处输入文字 🛛 🔽
	HH_LSP1202_6Y	<u> 实型(32位)</u>	HH.LSP1202_6Y
	HH_LSP1201_9Y	实型 (32位)	HH.LSP1201_9Y
	HH_LSP1103_6Y	<u>实型(32位)</u>	HH.LSP1103_6Y
	HH_LSP1103_5Y	<u> 实型(32位)</u>	HH.LSP1103_5Y
	HH_LSP1201_8Y	<u> 实型(32位)</u>	HH.LSP1201_8Y
	HH_LSP1201_7Y	<u> 实型(32位)</u>	HH.LSP1201_7Y
	HH_LSP1201_6Y	<u> 实型(32位)</u>	HH.LSP1201_6Y
	HH_LSP1201_5Y	实型(32位)	HH.LSP1201_5Y
	HH_LSP1103_4Y	<u> 实型(32位)</u>	HH.LSP1103_4Y
	HH_LSP1103_3Y	实型 (32位)	HH.LSP1103_3Y
	HH_LSP1201_4Y	<u> 实型(32位)</u>	HH.LSP1201_4Y
	HH_LSP1201_3Y	<u> 实型(32位)</u>	HH.LSP1201_3Y
	HH_LSP1201_2Y	<u> 实型(32位)</u>	HH.LSP1201_2Y
	HH_LSP1201_1Y	<u> </u>	HH.LSP1201_1Y
	HH_LSP1102_6Y	<u> 实型(32位)</u>	HH.LSP1102_6Y
	HH_LSP1102_5Y	<u> </u>	HH.LSP1102_5Y
	HH_LSP1103_2Y	<u> </u>	HH.LSP1103_2Y
	HH_LSP1102_4Y	<u> </u>	HH.LSP1102_4Y
Ż.		ホーエルショントン	
·			P

图 3-4 位号页签

 可对导入的位号进行设置,在位号页签中选中某导入位号后,点击"导入设置",实型和整型变 量跳出如图 3-5 所示模拟量配置界面,开关量跳出如图 3-6 所示开关量配置界面,字符串变量 跳出如图 3-7 所示字符串配置界面,不同类型的变量导入设置如下所述。

模拟重	×
基本信息 ■ 截取位号名(M) 倒数从第 2 ▼ 段到第 1 ▼ 段 ■ 添加前缀(A) 位号分组(G) 位号分组1 ▼ 0 读写	田程 设置方式: 自定义 高限: 100 低限:
描述 设置方式: 自定义 描述: 单位 设置方式: 自定义	 报警 设置方式: 不启用 界限值 报警文本 厂低低字段名: 界限值字段名 据警文本字段名 厂低字段名: 界限值字段名 厂高字段名: 界限值字段名 据警文本字段名 振警文本字段名
单位:	□ 高高字段名: 界限值字段名 报警文本字段名 确定 取消

图 3-5 模拟量导入设置

表 3-2	模拟量导入界面参数说明
-------	-------------

菜单项	功能	作用或描述	
	截取位号名	用于截取位号名,选择位号的段位,位号从右边开始,每遇 到一个小数点为一段。 比如位号 Device1.Group.AI101,有三段,如果截取第1段到 第2段,则截取的位号名为 Device1.Group。	
基本信息	添加前缀	勾选添加位号前缀,为已选的位号添加前缀。	
	位号分组	选择位号分组	
	只读	位号只读	
	读写	位号能读,也能回写。	
	设置方式(自定义)	描述:对位号进行自定义的描述。	
描述	设置方式(默认)	使用系统默认设置:不使用描述信息。	
	设置方式(从 OPC 服务器读取)	描述字段名:和 OPC 服务器中的字段名一致,系统自动设置	
单位	设置方式(自定义)	单位:通过下拉菜单,对位号进行自定义选择。	
	设置方式(默认)	使用系统默认设置:默认单位为%,不可修改。	
	设置方式(从 OPC 服务器读取)	单位字段名:和 OPC 服务器中的字段名一致,系统自动设置。	
量程	设置方式(自定义)	高限: 自定义量程高限 低限: 自定义量程低限	
	设置方式(从 OPC 服务器读取)	高限字段名:和 OPC 服务器中的字段名一致,系统自动设置。 低限字段名:和 OPC 服务器中的字段名一致,系统自动设置。	
报警	设置方式(自定义)	界限值: 自定义界限值 报警文本: 自定义报警文本	

菜单项	功能	作用或描述
	设置方式(从 OPC 服务器读取)	界限值:和 OPC 服务器中的字段名一致,系统自动设置。 报警文本:和 OPC 服务器中的字段名一致,系统自动设置。
	设置方式(不启用)	不进行报警设置

选择导入的类型为开关量,则弹出"开关量"对话框,如图 3-6 所示。

开关里 🛛 🗡 🗡
基本信息 「 截取位号名(M) 倒数从第 2 「 段到第 1 」 段
□添加前缀(A)
位号分组(G) <u>位号分组0</u> ▼ ○读写
「描述
设置方式: 自定义
描述:
┌显示
OFF描述: OFF颜色: 绿色 ▼
ON 描述: ON 颜色: 红色 ▼
┌报警─────
设置方式: 不启用
C OFF C ON 优先级: 0 🔽
确定取消

图 3-6 开关量位号导入属性设置对话框

表 3-1	; 开关量信	Σ号导入	参数说明
-------	--------	------	------

菜单项	功能	作用或描述	
基本信息	截取位号名	用于截取位号名,选择位号的段位,位号从右边开始,没遇 到一个小数点为一段。 比如位号 Device1.Group.AI101,有三段,如果截取第1段到 第2段,则截取的位号名为 Device1.Group。	
	添加前缀	勾选添加位号前缀,为已选的位号添加前缀。	
	位号分组	选择位号分组	
	只读	位号只读	
	读写	位号能读,也能回写。	
描述	设置方式(自定义)	描述:对位号进行自定义的描述。	
	设置方式(默认)	使用系统默认设置:不使用描述信息。	

菜单项	功能	作用或描述
	设置方式(从 OPC 服务器读取)	描述字段名:和 OPC 服务器中的字段名一致,系统自动设置。
	OFF 描述	对 OFF 状态进行描述。
显示	OFF 颜色	绿、黄、红三色可选。如果选择默认,则和 OPC 服务器保持 相同设置。
	ON 描述	对 ON 状态进行描述。
	ON 颜色	绿、黄、红三色可选。如果选择默认,则和 OPC 服务器保持 相同设置。
报擎	设置方式(启用)	选择 ON\OFF 报警,并设置优先级。
目と言	设置方式 (不启用)	不进行报警设置。

选择导入的类型为字符串,则弹出"字符串"对话框,如图 3-7 所示。

字符串 🛛 💆
基本信息 ■ 截取位号名(M) 倒数从第 2 ▼ 段到第 1 ▼ 段 ■ 添加前缀(A) ● 只读 位号分组(G) 100000 ▼ ○ 读写
描述
描述:
□ 启用事件消息处理 优先级: □ _
确定 取消

图 3-7 字符串位号导入属性设置对话框

字符串位号导入属性设置和开关量基本一致,参见表 3-3。启用事件消息处理:设置是否启用 字符串变量的事件处理。当复选框被选中时,启用字符串变量事件处理,反之,则不启用。

8. 设置完成后点击**员**,保存 OPC DA 驱动的配置。

3.2 配置驱动位号的I/O地址

配置 OPC DA 驱动后,除了直接导入位号外,还可以手动添加 OPC DA 位号。手动添加位号的 方法请详见《数据库管理软件使用手册》或《中控数据采集器软件使用手册》,本小节仅描述如何配 置位号的 IO 地址。

1. OPC DA驱动位号的"IO地址指定"界面如图 3-8 所示。

IO地址指定		×
	2	
服务器名:	JXserver	•
服务器位号名:	HIC000. I	-
□- Root □- [8]仪表通i □- [6]KDN-720 □- 自定义(□- 南·自定义) □- 自定义(□- 自定义) □- 由定义(□- 由定义) □- 由定义(□- 由定义) □- 由定义(□- 由定义) □- 由定义(□- 由定义) □- 由定义(□	田 田 田 田 田 田 田 田 田 田 田 田 田 田	
	[确认] 耳	则消 🔤

图 3-8 选择位号

- 2. IO 地址可设置为实时数据或诊断信息,完成后单击"确认"。
 - 实时数据: 在"实时数据"页签中,"服务器名"下拉框中选择 OPC DA 服务器,在服务器 位号列表中选择 OPC DA 位号。
 - 诊断信息:在"诊断信息"页签中,选择服务器名以及诊断的信息项,诊断信息状态值如表
 3-4 所示。

表 3-4 诊断位号状态值

诊断信息	功能	状态:值
OPC DA 状态	提供基于通讯的诊断信息	通信断开: 0 (OFF) 通信正常: 1 (ON)

3. 位号属性设置完成后,单击"确定",返回到如图 3-9 所示软件主界面。

位号名	类型	描述	I/O驱动	I/0地址
在此处输入文字 🔽	在此 🍸	在. 🍸	在此 🍸	在此处输入文字 🛛 🔽
NAI2001007	实型		OPC DA	NAI2001007@JXserver
OPC-TAG1	整型		OPC DA	#ges.SERVER_STATE

图 3-9 成功添加 OPC 位号

如 图 3-9 所示, OPC位号的实时数据I/O地址采用"位号名@OPC 服务器名"的形式, 诊断信息I/O地址采用"#OPC 服务器名.诊断信息"的形式。

4 Modbus RTU驱动

通过 Modbus RTU 驱动,调用方可以实现标准 Modbus RTU 系统的接入。

4.1 配置驱动

添加 Modbus RTU 驱动后,可以通过以下步骤配置 Modbus RTU 驱动。

1. "Modbus RTU驱动配置界面"如图 4-1 所示。

III Modbus RTU 驱动配置		×
文件(F) 编辑(E)		
🖶 👂 🚢 📾 🗙 🗖 🖶 S V	HLLFD	
Modbus RTU	属性	值
	□ 驱动属性	·
	驱动名	ModbusRTU
	描述	SUPCON
	通道数	0
	设备数	0
	快数	0

图 4-1 Modbus RTU 驱动配置界面

2. 左键单击 建按钮或者单击菜单栏 【编辑/添加通道】, 添加通道如 图 4-2 所示。

Modbus RTU	属	性	值	
Channel0	Ξ	通道属性		
		通道名	Channel0	
		描述		
		协议	RTU	
		模式	Master	
	Ξ	主通道设置		
		COM	1	
		波特率	19200	
		数据位	8	
		停止位	1	
		校验	None	
		轮询之间的延迟(毫秒)	0	
	Ŧ	冗余通道设置		

图 4-2 通道参数配置

3. 在通道属性界面中配置通道参数,参数说明如表 4-1 所示。

表 4-1 通道参数说明

参数名	含义	说明
通道名	通道名称	 通道名由英文字母、数字、-、_组成,最长为64个字节 通道名称不能重复 一个通道对应计算机的一个串口
描述	通道描述信息	最长为 64 个字节
协议	通信协议	RTU 或 ASCII 可选
模式	运行模式	 Master 或 Slaver,分别代表主站和从站 主站主动向从站请求数据,等待从站响应,从站等待主站请求并返回响应数据 目前只支持 Master
СОМ	串口号	 0表示无效,1~256分别对应计算机上的串口号 COM1~ COM256 同一串口号不可重复指定
波特率	-	 可设置 110、150、300、600、1200、2400、4800、9600、19200、38400、57600、115200 设置必须与对方串口的对应参数一致
数据位	数据位	 协议为 RTU 时,为 8 协议为 ASCII 时,为 7、8 可选
停止位	-	 可设置为1和2 设置必须与对方串口的对应参数一致
校验	检验模式	 可设置为 None、Odd、Even、Mark、Space 设置必须与对方串口的对应参数一致
轮询之间的延迟(毫秒)	轮询各个 BLOCK 数据块时的延时	配置范围为 0~60000
启用冗余(暂 不支持)	启用冗余通道	 运行时使用主通道,主通道故障时,使用冗余通道 NO:不启用冗余;YES:启用冗余

4. 选中一个通道, 左键单击 选 按钮或单击菜单栏【编辑/添加设备】, 添加一个设备后, 如 图 4-3 所示。

		1
属	性	值
	设备描述	
	设备名	Device0
	描述	
	启用设备	YES
	主设备设置	
Ð	主设备ID	1
	超时(臺秒)	5000
	重试次数	3
	重连周期(臺秒)	60000
	冗余设备设置	
	其他设置	
	数据位规则	bi t0_15
	输出类型	Single_Write
		属性 □ 设备描述 设备名 描述 启用设备 已 主设备记 主设备ID 超时(毫秒) 重法周期(毫秒) 回 冗余设备设置 日 其他设置 数据位规则 輸出类型

图 4-3 设备参数配置

5. 添加设备后,在属性界面中设置相应参数,参数说明如表 4-2 所示。

表 4-2 通道参数说明

参数名	含义	说明	
设备名	设备名称	 名称由英文字母、数字、-、_组成,最长为 64 个字节 同一个通道下的设备名称不允许重复 一个通道下可挂若干个设备 	
描述	设备描述信息	最长为 64 个字节	
启用设备	是否启用当前设备	YES: 启用当前设备; NO: 禁用当前设备	
主设备 ID	设备号	范围为1~247,同一通道设备号不允许重复	
超时	主站发送命令后至命令响 应之间的最长等待时间	0~60000ms	
重试次数	命令响应超时后重试发送 命令的次数	0~10000	
重连周期	设备异常后重连的周期	50~86400000ms	
启用冗余(暂 不支持)	启用冗余设备	 主设备故障时,自动切换到冗余设备 NO:不启用冗余;YES:启用冗余 	
数据位规则	-	 bit0_15: 大端模式(低位在前) bit15_0: 小端模式(高位在前) 	
输出类型	-	 Single_Write:单地址使用 5、6 号单写命令 Group_Write:多地址使用 15、16 号组写命令 Force_Group_Write:强制使用 15、16 号组写命令 	

6. 选中一个设备, 左键单击 ■ 按钮或者单击菜单栏【编辑/添加数据块】, 添加一个数据块后, 如
 图 4-4 所示。

🖃 🚎 📥 Modbus RTU	属性	值
Erre Channelo	□ 数据块	
	名称	BlockO
BlockU	描述	
	□ I/0地址	
	地址进制	十进制
	起始地址	0
	终止地址	0
	地址长度	1
	□ 轮询设置	
	周期(臺秒)	1000
	□ 其他设置	
	数据类型	01 COIL

图 4-4 块参数配置

7. 添加数据块后设置相应参数,参数说明如表 4-3 所示。

表 4-3 通道参数说明

参数名	含义	说明
名称	数据块的名称	 名称由英文字母、数字、-、_组成,最长为 64 个字 节 同一个设备下的数据块名称不允许重复 一个设备下允许有若干个 Block
描述	数据块描述信息	最长为 64 个字节
地址进制	I/O 地址数据的显示方式	十进制或十六进制可选
起始地址	数据块起始地址	可设置的范围为 0~65535
终止地址	数据块结束地址	终止地址不可填写,根据其实际地址和个数自动计算
地址长度	结束地址与起始地址之 差	 COIL、DISCRETES INPUT 类型地址的最大长度为2000,最小为1; INPUT REGISTER、HOLDING REGISTER 类型地址的最大长度为125,最小长度为1
周期	两次发包的时间间隔	每隔一个周期去获取更新数据,单位为毫秒
数据类型	数据块数据类型	 01 COIL: 0 地址类型, 线圈类型, 1 个 bit, 可读写 (1 命令读、5, 15 命令写)。 02 DISCRETES INPUT: 1 地址类型, 离散量, 1 个 bit, 只读(2 命令读)。 03 HOLDING REGISTER: 4 地址类型, 保持寄存器, 2 个 byte, 可读写(3 命令读、6, 16 命令写)。 04 INPUT REGISTER: 3 地址类型, 输入寄存器, 2 个 byte, 只读(4 命令读)。

8. 组态完通道、设备和块后点击 🖬 保存。

E E

4.2 在线调试驱动

提示:

Modbus RTU驱动配置完成后,可对其进行调试。选中某数据块后,点击工具栏 按钮,调试 界面如 图 4-5 所示。界面分上下两部分:

- 上方显示数据块地址和值,地址由数据块的数据类型、起始地址和地址长度决定。可读写的数据块,双击地址即可弹出数据块值的更改界面。
- 下方显示发送和接收的数据包字节流,若连接失败则提示可能的原因。字节流含义符合 RTU 协议,具体需查阅相关协议文件。若提示服务器连接失败,请根据提示确认:服务器是否 开启,网络是否通畅,串口等配置是否正确且未被占用等。

HOLDING REGISTER 和 INPUT REGISTER 类型的数据块可对数据的数制或者数据类型进行切换。默认为有符号十进制(S),可切换为:无符号十进制(U)/十六进制(H)/长整型(L)/反向长整型(C)/单精度浮点型(F)/双精度浮点型(D)。

显示字节流和连接失败提示

在线调试过程中可进行暂停(暂停调试)和重置(清空字节流信息)。

		业小数场场场通知问量	
Modbus RTU Channel0 Block0 Block1 Block2 Channel1	数据块名称: Channel0.Device0.Block0 000000: 0 字节流: 1 16:14:51 send: 01 01 00 00 00 01 FD CA 2 16:14:51 recv: 01 01 01 00 51 88 3 16:14:52 send: 01 01 00 00 01 FD CA 4 16:14:52 recv: 01 01 01 00 51 88		
	收包: 0 发包: 1 错误包:	: 0 暂停 [重置

图 4-5 RTU 调试界面

4.3 配置驱动位号的I/O地址

配置 Modbus RTU 驱动后,可以手动添加 Modbus RTU 位号。手动添加位号的方法请详见《数 据库管理软件使用手册》或《中控数据采集器软件使用手册》,本小节仅描述如何配置位号的 IO 地址。

1. Modbus RTU驱动位号的"IO地址指定"界面如图 4-6 所示。

10地址指定					×
实时数据 诊断信息					
- 块选择	┌信息───				
通道: Channel0 🔽	协议:	RTU	模式:	Master	
	地址类型:	Digit4	输出类型:	Single_Write	
设备: Device0 💌	地址位:	bit0_15	输入类型:	01 COIL	
	开始地址 :	0	结束地址:	0	
央: Block0	块内偏移 <mark>:</mark>	0	数据类型:	BIT 🔽 0 💌	
			确认	取消	

图 4-6 IO 地址设置(Modbus RTU 驱动)

- 2. I/O 地址可设置为实时数据或诊断信息,完成后单击"确认"。
 - 实时数据:在"实时数据"页签中,选择通道、设备和块,输入块内偏移地址(块内偏移地址不能超出地址范围)并选择位号数据类型。位号数据类型中,BIT 类型可在后方下拉框中选择定位到位(0~15),而BYTE、SINT、USINT可定位到高字节(1)或低字节(0),若没有特别指定,则将默认定位到低字节中。
 - 诊断信息:在"诊断信息"页签中,选择某通道某设备,并可设定诊断的信息,诊断信息
 状态值如表 4-4 所示。

表 4-4	诊断位号状态值
-------	---------

诊断信息	功能	状态:值
设备通信状态	提供基于通讯的诊断信息	通信断开: 0 (OFF) 通信正常: 1 (ON)
通讯端口状态	提供指定串口是否可正常通 信信息	无法正常打开: 0 (OFF) 可正常打开: 1 (ON)

3. 位号属性完成后,单击"确定",返回至如图 4-7 所示的软件主界面。

位号名	类型	1/0驱动	I/0地址
在此处输入文字 🍸	在此 🍸	在此处输入文字 🍸	在此处输入文字
RTV1	整型	Modbus RTV	ChannelO. DeviceO. BlockO. O. WORD
RTU2	整型	Modbus RTV	#ChannelO. DeviceO. DEVICE_STATE

图 4-7 成功添加 Modbus RTU 位号

如 图 4-7 所示, Modbus RTU位号的实时数据I/O地址采用"通道名.设备名.数据块名.偏移量.数据类型"的形式,诊断信息I/O地址采用"#通道名.设备名.诊断信息"的形式。

4.4 参数说明

Modbus RTU位号类型的详细描述如表 4-5 所示。

类型	描述	数据位	取值范围	
Bit	1位	1	0~1	
BOOL	布尔型	1	0~1	
BYTE	1 字节	8	0~0xFF	
WORD	2 字节	16	0~0xFFFF	
DWORD	4 字节	32	$0\sim 0$ xFFFF FFFF	
LWORD	8 字节	64	$0{\sim}0$ xFFFF FFFF FFFF FFFF	
SINT	短整型	8	-128~127	
INT	整型	16	-32768~32767	
DINT	双整型	32	$-2^{31} \sim 2^{31}$ -1	
LINT	长整型	64	$-2^{63} \sim 2^{63} - 1$	
USINT	无符号短整型	8	0~255	
UINT	无符号整型	16	0~65535	
UDINT	无符号双整型	32	$0\sim 2^{32}-1$	
ULINT	无符号长整型	64	$0\sim 2^{64}$ -1	
REAL	单精度浮点型	32	-3.40E+38 ~ 3.40E+38	
LREAL	双精度浮点型	64	-1.79E+ 308 ~ 1.79E+308	

表 4-5 位号类型详细描述表

4.5 注意事项

选择位号类型时,需要注意以下内容:

数据块类型为 COIL 和 DISCRETES INPUT 时,只能组 BOOL 类型的位号。

数据块类型为 HOLDING REGISTER 和 INPUT REGISTER 时,不能组 BOOL 类型位号。

数据块默认位号类型为 WORD。

如果位号 IO 地址不带数据类型(为兼容老组态),则将位号按照 WORD 类型处理。

设置位号的偏移量时,需要注意以下内容:

Bit、BOOL、BYTE、WORD、SINT、INT、USINT 和 UINT 类型的位号在数据块内占一个偏移地址。所以,添加了以上几种类型的位号(如位号 A)后,再添加位号时"块内偏移"应该与前一位号(位号 A)的"块内偏移"相差 1,否则会导致数据储存区域重叠,导致数据错乱。

DWORD、LWORD、DINT、LINT、UDINT、ULINT、REAL、LREAL 类型的位号在数据块内 占两个偏移地址。所以,添加了以上几种类型的位号后(如位号 B),再添加位号时"块内偏移"应 该与前一位号(位号B)的"块内偏移"相差2,否则会导致数据储存区域重叠,导致数据错乱。

同一个偏移地址只能设一种数据类型的位号,如果同时组了两个不同数据类型的位号,则后一 个位号不起作用,值永远为0。

如位号 tag1 的 I/O 地址是 CHANNEL0.DEVICE0.BLOCK0.1.REAL, 位号 tag2 的 I/O 地址是 CHANNEL0.DEVICE0.BLOCK0.1.WORD。则位号 tag1 可以正常工作, 而位号 tag2 的值永远为 0。

5 Modbus TCP驱动

通过 Modbus TCP 驱动,调用方可以实现标准 Modbus TCP 系统的接入。目前最多可接入 300 个 Modbus TCP 设备的组态。

5.1 配置驱动

添加 Modbus TCP 驱动后,可以通过以下步骤配置 Modbus TCP 驱动。

1. "Modbus TCP驱动配置"界面如图 5-1 所示。

III Modbus TCP 驱动配置		×
文件(F) 编辑(E)		
🖬 📇 📾 🗙 🗖 🕾 🛛	H L L' F D	
	属性	值
	日组	
	名称	DEFAULT
	() () () () () () () () () () () () () (0
	· · · · · · · · · · · · · · · · · · ·	0
	J	

图 5-1 Modbus TCP 驱动配置界面

- DEFAULT 为默认的设备分组,不能被删除,也不能修改分组名。
 单击■可以新增分组,单击➤可以删除选中的分组。选中分组后可以在右侧界面中修改分组名, 名称不能为空,可包含字母、数字、短横杠(-)或下划线(_),不超过 64 个字符,不能重复。
- 3. 选择一个分组后, 左键单击选按钮或单击菜单栏【编辑/添加设备】, 添加设备后如图 5-2 所示。

图 5-2 设备参数配置

4. 添加设备后设置相应参数,参数说明如表 5-1 所示。

表 5-1 通道参数说明

分类	参数名	含义	说明
设备	名称	设备的名称	 名称由英文字母、数字、-、_组成,最长为64 个字节 设备名称不允许重复
	描述	设备描述信息	最长为 64 个字节
	启用设备	是否启用当前设备	选"是"启用当前设备,选"否"禁用当前设备
	主IP	主设备主 IP 地址	-
	主端口	主设备主 TCP 端口号	范围: 1~65535
	冗余 IP	主设备冗余 IP 地址	-
	冗余端口	主设备冗余 TCP 端口号	范围: 1~65535
	设备 ID	设备从站 ID	范围: 1~247
主设备	超时	主站发送命令后至命令响 应之间的最长等待时间	范围: 0~86400000ms
	重试次数	命令响应超时后重试发送 命令的次数	范围: 0~10000
	重试延时	数据包超时后,到下一数据 包发送之间的时间	范围: 0~86400000ms
冗余设备*	启用冗余	启用冗余设备	主设备故障时,自动切换到冗余设备是:启用冗余;否:不启用冗余
轮询 (并行发包	主周期	前后两次发包的时间间隔	 每隔一个周期去获取更新数据,单位为毫秒 设置范围: 50~86400000

分类	参数名	含义	说明
的轮询周 期)	副周期	-	 当设备(Device)下某个数据块(BLOCK) 发送数据包超时达到设置的次数后,以此周期 去获取更新数据,单位为毫秒 设置范围: 50~86400000
	输出类型	写数据模式,有三种写模式	 Single_Write:单地址使用 5、6 号单写命令 Group_Write:多地址使用 15、16 号组写命令 Force_Group_Write:强制使用 15、16 号组写命令
	数据位规则	设置成与指定设备数据的 大小端相一致	 bit0_15: 大端模式(低位在前) bit15_0: 小端模式(高位在前)
	发包规则	选择发包的规则	并行或串行可选
其他设置	首字为低	将首字(2字节)与之后的 1个字(2字节)进行交换	 配合数据位规则使用,选择开启或关闭 仅对4字节及以上长度的数据生效 开启时,ABCD→CDAB 详见"数据字节序说明"
	首双字为低	将首双字(4 字节)与之后 的双字(4 字节)进行交换	 配合数据位规则使用,选择开启或关闭 仅对8字节及以上长度的数据生效 开启时,ABCDEFGH→EFGHABCD 详见"数据字节序说明"

*冗余设备的其他参数与主设备相同,不再赘述。

5. 选中一个设备, 左键单击 **•**按钮或单击菜单栏【编辑/添加数据块】, 添加一个数据块后, 如图 5-3 所示。

图 5-3 块参数配置

添加数据块后设置相应参数,参数说明如

6. 表 5-2 所示。

分类	参数名	含义	说明
数据块	名称	数据块的名称	 名称由英文字母、数字、-、_组成,最长为64个字节 同一个设备下的数据块名称不允许重复 一个设备下允许有若干个 Block
	描述	数据块描述信息	最长为 64 个字节
	地址进制	I/O 地址数据的显示方 式	十进制或十六进制可选
	起始地址	数据块起始地址	可设置的范围为 0~65535
I/O 地址	结束地址	数据块结束地址	终止地址不可填写,根据其实际地址和个数自动计算
	地址长度	结束地址与起始地址 之差	 COIL、DISCRETES INPUT 类型地址的最大长度为2000,最小为1; INPUT REGISTER、HOLDING REGISTER 类型地址的最大长度为125,最小长度为1
轮询	主周期	前后两次发包的时间 间隔	 每隔一个周期去获取更新数据,单位为毫秒 设置范围: 50~86400000
(串行发包 的轮询周期)	副周期	-	 当数据包超时达到设置的次数后,以此周期去获取 更新数据,单位为毫秒 设置范围: 50~86400000
其他设置	数据类型	数据块数据类型	 01 COIL: 0地址类型,线圈类型,1个bit,可读写(1命令读、5,15命令写) 02 DISCRETES INPUT: 1地址类型,离散量,1个bit,只读(2命令读) 03 HOLDING REGISTER: 4地址类型,保持寄存器,2个byte,可读写(3命令读、6,16命令写) 04 INPUT REGISTER: 3地址类型,输入寄存器,2 个byte,只读(4命令读)

表 5-2 通道参数说明

7. 组态完设备和块后点击 🖫 保存。

2. 删除上一级节点时,其下的子节点也一并被删除。

3. 针对不同设备不同性能的需求,可通过设置 Device 中的"超时"、"重试延时"参数和 Block 中的"主周期"、"副周期"参数来进行性能匹配。

5.2 在线调试驱动

Modbus TCP驱动配置完成后,可对其进行调试。选中某数据块后,点击工具栏 计按钮,调试界 面如 图 5-4 所示。界面分上下两部分:

- 上方显示数据块地址和值,地址由数据块的数据类型、起始地址和地址长度决定。可读写的数据块,双击地址即可弹出数据块值的更改界面。
- 下方显示发送和接收的数据包字节流,若连接失败则提示可能的原因,字节流始终显示最新的1000条。字节流含义符合 Modbus TCP 协议,具体需查阅相关协议文件。若提示服务器连接失败,请根据提示确认:服务器是否开启,网络是否通畅,IP/端口等配置是否正确等。

HOLDING REGISTER 和 INPUT REGISTER 类型的数据块可对数据的数制或者数据类型进行切换。默认为有符号十进制(S),可切换为:无符号十进制(U)/十六进制(H)/长整型(L)/反向长整型(C)/单精度浮点型(F)/双精度浮点型(D)。

在线调试过程中可进行暂停(暂停调试)和重置(清空字节流信息)设置。

Modbus TCP	数据块名称:	DEVICE1.BLOCK1	调试IP:	172.30.11.181	•
⊡…∄ DEVICE1	000000 : 0				
	」 字节流:				
	1 14:42:15 se	nd: 00 0F 00 00 00 06 41 0	1 00 00 00 01		
	2 14:42:15 re	cv: 00 0F 00 00 00 04 41 0	10100		
	3 14:42:16 se	nd: 00 10 00 00 00 06 41 0	1 00 00 00 01		
	4 14:42:16 re	cv: 00 10 00 00 00 04 41 01	10100		
	5 14:42:17 se	nd: 00 11 00 00 00 06 41 0	1 00 00 00 01		
	6 14:42:17 re	cv: 00 11 00 00 00 04 41 01	10100		
	收包: 3	发包: 3 错误的	J: 0	暂停 重置	
	图	5-4 TCP 调试界面			

5.3 配置驱动位号的I/O地址

配置 Modbus TCP 驱动后,可以手动添加 Modbus TCP 位号。手动添加位号的方法请详见《数 据库管理软件使用手册》或《中控数据采集器软件使用手册》,本小节仅描述如何配置位号的 IO 地址。

1. Modbus TCP驱动位号"IO地址选择"界面如图 5-5 所示。

IO地址选择		×
实时数据		
块选择	「信息 地址类型: ^{Digit4}	输出类型: Single_Write
设备: DEVICE1	数据位: bit0_15	输入类型: 02 DISCRETES INPUT
块: BLOCK1 💌	起始地址: 0	结束地址: 0
	块内偏移: 0	数据类型: SINT ▼ 0 ▼
		确认 取消

图 5-5 IO 地址设置(ModbusTCP 驱动)

- 2. IO 地址可设置为实时数据或诊断信息,设置完成后点击"确定"。
 - 实时数据:在"实时数据"页签中选择设备、块和数据类型,并输入块内偏移地址(块内偏移地址默认从0开始,不能超出地址范围)。位号数据类型中,BIT类型可在后方下拉框中选择定位到位(0~15),而 BYTE、SINT、USINT可定位到高字节(1)或低字节(0),若没有特别指定,则将默认定位到低字节中。
 - 诊断信息:在"诊断信息"页签中选择设备及诊断的信息,诊断信息状态值如表 5-3 所示。

表 5-3 诊断位号状态值

诊断信息	功能	状态:值
		通信断开: 0 当前工作链路为主设条主 IP. 1
设备通信状态	提供基于通讯的诊断信息	当前工作链路为主设备头 IP: 2
		当前工作链路为冗余设备主 IP: 3 当前工作链路为冗余设备从 IP: 4

3. 完成位号属性设置后,单击"确定",返回如图 5-6 所示的软件主界面。

位号名		类型		1/0驱动		I/O地址	
在此处输	Y	在此	Y	在此处输入	Y	在此处输入文字	7
TCP1		整型	_	Modbus TCP		DEVICE1.BLOCK1.0.	WORD
TCP2		整型		Modbus TCP		#DEVICE1.DEVICE_S	TATE

图 5-6 成功添加 Modbus TCP 位号

如 图 5-6 所示, Modbus TCP位号的实时数据I/O地址采取"设备名.数据块名.偏移量.数据类型"的形式,诊断信息I/O地址采取"#设备名.诊断信息"的形式。

5.4 参数说明

Modbus TCP位号类型的详细描述如表 5-4 所示。

类型	描述	数据位	取值范围
Bit	1位	1	0~1
BOOL	布尔型	1	0~1
BYTE	1字节	8	0~0xFF
WORD	2 字节	16	0~0xFFFF
DWORD	4 字节	32	0~0xFFFFFFF
LWORD	8 字节	64	$0{\sim}0$ xFFFF FFFF FFFF FFFF
SINT	短整型	8	-128~127
INT	整型	16	-32768~32767
DINT	双整型	32	$-2^{31} \sim 2^{31} - 1$
LINT	长整型	64	$-2^{63} \sim 2^{63}$ -1
USINT	无符号短整型	8	0~255
UINT	无符号整型	16	0~65535
UDINT	无符号双整型	32	$0\sim 2^{32}-1$
ULINT	无符号长整型	64	0~2 ⁶⁴ -1
REAL	单精度浮点型	32	-3.40E+38 ~ 3.40E+38
LREAL	双精度浮点型	64	-1.79E+ 308 ~ 1.79E+308

表 5-4 位号类型详细描述表

5.5 数据字节序说明

数据的字节序受"数据位规则、首字为低、首双字为低"三个配置项影响。

这三个配置项对数据类型的影响如 表 5-5 所示,对数据块类型的影响如 表 5-6 所示。(√表示 影响, -表示不影响)

表 5-5 影响的数据类型

数据类型	数据位规则	首字位低	首双字为低
BIT、BOOL、BYTE、WORD、SINT、INT、USINT、UINT	\checkmark	-	-
DWORD, DINT, UDINT, REAL	\checkmark	\checkmark	-
LWORD、LINT、ULINT、LREAL	\checkmark	\checkmark	\checkmark

表 5-6 影响的数据块类型

数据块类型	数据位规则	首字位低	首双字为低
01 COIL	_	_	_

02 DISCRETES INPUT	-	-	-
03 HOLDING REGISTER	\checkmark	\checkmark	\checkmark
04 INPUT REGISTER	\checkmark	\checkmark	\checkmark

打开或导入 InPlant SCADA V5.50.03.00 或采集器 V3.03.07.00 之前版本的驱动数据时,配置参数会自动更新。更新前后的参数对比如下表所示。

更新前	更新后				
数据位规则	数据位规则	首字为低	首双字为低		
bit0_15	bit15_0	开启	开启		
Bit15_0	bit15_0	关闭	关闭		

5.6 注意事项

在选择位号类型时,需要注意以下内容:

数据块类型为 COIL 和 DISCRETES INPUT 时,只能组 BOOL 类型的位号。

数据块类型为 HOLDING REGISTER 和 INPUT REGISTER 时,不能组 BOOL 类型位号。

数据块默认位号类型为 WORD。

如果位号 IO 地址不带数据类型(为兼容老组态),则将位号按照 WORD 类型处理。

设置位号的偏移量时需要注意以下内容:

地址偏移默认从0开始。

Bit、BOOL、BYTE、WORD、SINT、INT、USINT 和 UINT 类型的位号在数据块内占一个偏移 地址。所以,添加了以上几种类型的位号(如位号 A)后,再添加位号时"块内偏移"应该与前一 位号(位号 A)的"块内偏移"相差 1,否则会导致数据储存区域重叠,导致数据错乱。

DWORD、LWORD、DINT、LINT、UDINT、ULINT、REAL 和 LREAL 类型的位号在数据块内 占两个偏移地址。所以,添加了以上几种类型的位号后(如位号 B),再添加位号时"块内偏移"应 该与前一位号(位号 B)的"块内偏移"相差 2,否则会导致数据储存区域重叠,导致数据错乱。

同一个偏移地址只能设一种数据类型的位号,如果同时组了两个不同数据类型的位号,则后一 个位号不起作用,值永远为0。

如 位 号 tag1 的 I/O 地 址 是 DEVICE0.BLOCK0.1.REAL, 位 号 tag2 的 I/O 地 址 是 DEVICE0.BLOCK0.1.WORD。则位号 tag1 可以正常工作, 而位号 tag2 则永远为 0。

6 IEC104 Master驱动

通过 IEC104 Master 驱动,调用方可以实现标准 IEC104 系统的接入。

6.1 配置驱动

添加 IEC104 Master 驱动后,可以通过以下步骤配置 IEC104 Master 驱动:

1. "IEC104 Master驱动配置"界面如图 6-1 所示。

IEC104 Waster驱动配置			×
文件 (2) 编辑 (2)			
🖬 👂 📾 🛛 🗙 🖉 D			
IEC 104 Master	设备 位号 与入策略		
	属性	值	
	□ 属性		
	驱动名称	IEC104 Master	
	1 驱动描述	SUPCON	
	会话数	0	
	分区数	0	
1			

图 6-1 IEC104 Master 驱动配置界面

2. 在结构树中选中"IEC104 Master"并在其右键菜单中选择"添加通道"命令。添加通道成功后的"IEC104 驱动配置"界面如图 6-2 所示。在配置界面中配置通道的参数。

EC104 Master	设备 位号 导入策略	
∎∰a Session0	属性	值
	□ 属性	
	名称	ChannelO
	描述	
	日 设置	
	主设备IP	127.0.0.1
	主端口	2404
	冗余设备IP	
	冗余端口	2404
	总召唤周期(s)	30
	断线续传	Disable
	时间源	LocalTime
	超时(ms)	30000
	消息队列长度	0

图 6-2 通道参数配置界面

3. 通道参数的详细说明如下:

表 6-1 通道参数说明

参数名	含义	说明
名称	通道名称	 名称由英文字母、数字、-、_组成,最长为64个字符 名称不允许重复
描述	对通道的注释信息	最长为 256 个字符
主设备 IP	主 104 设备的 IP 地址	 支持网络冗余 此处可最多配置 2 个 IP 地址,不同的 IP 地址间用逗号 (,)隔开
主端口	设备通信端口号	 范围: 1~65535 若一个设备有多个端口,此处可最多配置2个端口,端口间用逗号(,)隔开 当其中一个端口被占用时,将自动连接另一个端口
冗余设备 IP	冗余 104 设备的 IP 地址	 支持网络冗余 此处可最多配置 2 个 IP 地址,不同的 IP 地址间用逗号 (,)隔开
冗余端口	设备通信端口号	 范围: 1~65535 若一个设备有多个端口,此处可最多配置2个端口,端口间用逗号(,)隔开 当其中一个端口被占用时,将自动连接另一个端口
总召唤周期	总召唤和电能脉冲召唤的周期	范围 5~86400 秒
断线续传	与 Slave 端网络恢复后,网络断 线期间的历史数据支持回补	Disable:不启用断线续传功能 Enable: 启用该功能
时间源	实时数据时间源选择	SlaveTime: 使用 IEC104 Slave(数据源)的时间戳 LocalTime: 使用 IEC104 Master(本地)的时间戳
超时	通道的超时等待时间	单位: ms 默认呈灰色,无法编辑
消息队列长度	通道内等待发送命令的消息队 列最大长度	默认为 0,表示无限长度 默认呈灰色,无法编辑

4. 在结构树中选择会话,在图 6-3 所示界面中配置会话的参数。

⊡ <mark>≦</mark> IEC1(⊡∮ C ⊡	04 Master hannel0 Session0 ES Sector0

is	备	位号	「导入策略」	
	属	性		值
	Ξ	属性		
		名称		SessionO
		描述		
	Ξ	设置		
		0A		0
		超时(ms)	60000

图 6-3 Session 参数配置界面

会话属性参数的说明如下:

- 名称: Session 的名称,由字母、数字及符号 "-"、"_" 组成,最长 64 字符,同一个 channel 下名称不可重复。
- 描述:对 Session 的注释,不超过 256 个字符。
- OA (Originator Address): 传送原因的主站站址, 默认为 0, 范围 0~255。
- 超时:发送命令响应超时的等待时间,默认 60000 毫秒。默认呈灰色,无法编辑。
- 5. 在结构树上选中会话,并在其右键命令中选择"添加分区"命令,添加分区成功后IEC104 驱动 配置界面如 图 6-4 所示。

图 6-4 分区参数配置界面

分区属性参数的说明如下:

名称: Sector 的名称,由字母、数字及符号 "-"、"_"组成,最长 64 字符,同一个 Session 下的 Sector 名称不可重复。

描述:对 Sector 的注释,不超过 256 个字符。

COA: 分组偏移地址,必须与 Slave 组态时相对应。COA 的范围为 0~65534。当高级冗余功能 开启时,自动添加一个 COA 为 65534 的 Sector,此 Sector 为系统保留,用于传输健康值。

- 6. 如果进行了位号导入,则可在"位号"页签下选择需要导入的位号,在"导入策略"中选择结构位号下的导入节点。位号的导入详见导入从站位号清单。"位号"页签下可对位号进行过滤, 过滤使用方法具体见位号过滤章节内容。
- 7. 组态完后点击 ₩保存,退出驱动配置界面。

已添加的通道显示在数据库管理主界面左侧的结构树下,通道下的位号显示在右侧位号列表中, 如 图 6-5 所示。

□■ 数据库	位号名		描述	I/03図定力	I/0地址	备注1
🖻 🗐 本地节点	在此处 🍸	在 7	在 🍸	在此处输 了	在此处输入文字 🏼 🍸	在 🍸
⊡	1	开关里		IEC104 Master	ChannelO. SectorO. O	
H Modbus TCP						
+ Modbus RTU						
- WEN IEC104 Master						
Channel0						
📟 Channel1						

图 6-5 结构树分级显示

6.2 导入从站位号清单

IEC104 Master 驱动中,可通过导入从站位号清单功能,导入从采集站 IEC104 Slave 中导出的位

- 号,具体操作步骤如下。
- 1. 打开 IEC104 Master 驱动配置界面,在 IEC104 Master 节点下添加一个通道(CHANNEL)。
- 2. 右键单击 CHANNEL,并在右键菜单中选择"导入从站位号清单"。
- 3. 在弹出的"打开"界面中选择.CSV 位号清单文件,并单击"打开"。.CSV 文件为 IEC104 Slave 下 CHANNEL 中导出的位号文件,必须与 Slave 中同时导出的.XML 文件放在一起,才可在此处 成功导入。文件中的位号名不能为纯数字。
- 在驱动配置界面中,选择"位号"页签,在此页签下可查看可导入的所有位号,勾选某位号前 的复选框,即表示导入该位号,保存后生效。
- 5. 选中"IEC104 Master"节点,并可在"导入策略"中设置某个结构位号下导入哪些节点。
- 6. 设置完成后,单击"保存"即完成位号的导入操作。

6.3 在线调试驱动

IEC 104 Master驱动配置完成后,可对其进行调试。选中某分区后,点击工具栏 按钮,调试界 面如 图 6-6 所示。界面分上下两部分:

- 上方显示数据块地址和值,地址由数据块的数据类型、起始地址和地址长度决定。可读写的数据块,双击地址即可弹出数据块值的更改界面。
- 下方显示发送和接收的数据包字节流,若连接失败则提示可能的原因。字节流含义符合 IEC 104 Master 协议,具体需查阅相关协议文件。若提示服务器连接失败,请根据提示确认:服务器是否开启,网络是否通畅,IP/端口等配置是否正确等。

分区数据以十进制(**D**)显示且无法更改。

在线调试过程中可进行暂停(暂停调试)和重置(清空字节流信息)。

⊡	数据块名称: Channel0.Sector0 IP: 172.30.9.254 ▼ Port: 2404 ▼		
	1:0 2:0 3:0 4:0.0000000E+000 5:0.0000000E+000		
	81 16:07:56 recv: 01 83 01 00 00 00 01 00 00 00 00 00 00		
	82 16:07:56 recv: 68 0E 36 00 2E 00		
83 16:07:56 recv: 65 01 07 00 03 00 00 00 05			
	84 16:07:56 send: 68 04 01 00 38 00		
	85 16:07:56 recv: 68 17 38 00 2E 00		
	1 86 10:07:56 recv: 00 82 01 00 00 00 04 00 00 00 00 00 00 00 00 00		
	收包: 61 发包: 27 错误包: 0 暂停 重置		

图 6-6 IEC 104 Master 调试界面

6.4 配置驱动位号的I/O地址

配置 IEC104 Master 驱动后,可以手动添加 IEC104 Master 位号。手动添加位号的方法请详见《数据库管理软件使用手册》或《中控数据采集器软件使用手册》,位号名不能为纯数字。本小节仅描述

如何配置位号的 IO 地址。

1. IEC104 Master驱动位号的"IO地址指定"界面如图 6-7 所示。

10地址指定				×
实时数据 诊断信息				
	-信息			
通道: Channel0 💌	900运力:	IEC104 Master	通道:	Channel0
	队列大小:	0	会话:	Session0
会话: Session0 ▼	超时:	60000	地址:	0
	分区:	Sector0	COA:	0
分区: Sector0 ▼	IOA:	0	输出IOA:	-1
			确认	取消

图 6-7 设置实时数据(IEC104 Master 驱动)

- 2. IO 地址可设置为实时数据或诊断信息,设置完成后点击"确定"。
 - 选择"实时数据"页签,选择在监控中获取实时数据的通道、会话、分区,输入 IOA 块内 偏移地址(块内偏移地址不能大于 10000000)。

不勾选"输出 IOA",则表示与 IOA 相同。勾选"输出 IOA"并在后面的文本框中,根据 位号类型配置遥控偏移地址或遥设偏移地址。电力行业中,一般情况下 IOA 和输出 IOA 可 参考下表进行配置。在现场实施过程中,请根据具体情况进行配置。如使用 SUPCON InPlant Collector 中的 IEC104Slave,则偏移地址无需配置。

配置项	类型	起始偏移地址	
ΙΟΑ	遥信(同开关量)	1	
	遥测(同模拟量)	16385 (0x4001)	
	遥脉(电度)	25601 (0x6401)	
输出 IOA	遥控	24577 (0x6001)	
	遥设	25089 (0x6201)	

表 6-2 配置项和偏移地址对应表

选择"诊断信息"页签,选择在监控中获取诊断信息的通道,点击确定保存。如表 6-3 所示。
表 6-3 诊断位号状态值

诊断信息	功能 状态:值	
		通信断开:0(OFF)
设备通信状态	提供基于通讯的诊断信息	当前工作链路为主设备 IP: 1
		当前工作链路为从设备 IP: 2

3. 完成位号属性设置后,单击"确定",返回软件主界面。

位号名	类型	I/O级Z力	I/0地址
在此 🍸	在此 🍸	在此处输入文字 🏼 🍸	在此处输入文字 🔽 🔽
IEC1041	整型	IEC104 Master	ChannelO. SectorO. O
IEC1042	整型	IEC104 Master	#ChannelO. DEVICE_STATE

图 6-8 成功添加 IEC104 Master 位号

如 图 6-8 所示, IEC104 Master位号的实时数据I/O地址采取"通道名.分区名.偏移量"的形式, 诊断信息I/O地址采取"#通道名.诊断信息"的形式。

7 GCS驱动

通过 GCS 驱动,调用方可以实现 G3&G5 系统的接入。

7.1 配置驱动

添加 GCS 驱动后,需要按照如下步骤配置 GCS 驱动。

 "GCS驱动配置"界面如图 7-1 所示。
 位号名大小写:是否将GCS组态的位号名转换为大写。YES表示启用,NO表示禁用。如果启用, 则组态中载入的位号名中的字母会被转换为大写;如果禁用,则保持原样。

GCS 驱动配置		×
文件(F) 编辑(E)		
🖬 🕒 🐚 🅏 🗙		
B GCS B DEFAULT	控制站 位号 导入策略 快速分组	
	属性	值
	□ 控制站总体信息	
	控制站个数	1
	位号名大小写	YES

图 7-1 GCS 驱动配置界面

- DEFAULT 为默认的设备分组,不能被删除,也不能修改分组名。
 单击
 可以新增分组,单击
 可以删除选中的分组。选中分组后可以在右侧界面中修改分组名, 名称不能为空,可包含字母、数字、短横杠(-)或下划线(_),不超过 64 个字符,不能重复。
- 选择一个分组后,单击"载入单站"按钮,选择一个.xPrj文件打开。单击"载入多站"按钮,选择一个.SysPrj文件打开,在弹出的选择控制站中选择要导入的控制站即可导入多个控制站。
 导入时,若检测到位号重名,则将弹出如图 7-2 所示的界面显示重名位号及其控制站名,并可进行以下操作。
 - 若需继续导入,则单击"确定",软件将以"前缀_位号名"的形式进行导入。前缀默认为 控制站名,双击单元格可修改(如下图红框所示)。自定义前缀必须以数字或者字母开头, 允许使用英文字母、数字、"-"或"_",不超过128个字符。
 当控制站名被更改后,"数据库管理软件"中将提示是否更新已存在的位号信息,单击"是" 即可同步前缀信息。位号前缀被更改后,无需手动调整已被流程图、报警等引用的位号。
 - 若单击"否",则取消导入。

位号重名響	告		×
以下控制 (选择"⊡]站点存在重名位号,需要添加前 取消"则本次不导入)	镪,默认为控制站名:	
	控制站名	前綴	
	C51	[C51]	
		双击可修成	
按由原用	黄友位早如下,		
经购购口只	里石应与如下。		
	位号名	控制站名	^
	Controller_D	CS1	
	MODULE10_D	CS1	
	MODULE10_In	CS1	
	MODULE11_D	CS1	
	MODULE11_In	CS1	
	MODULE1_D	CS1	
	MODULE1_In	CS1	
	MODULE2_D	CS1	
	MODULE2_In	CS1	
	MODULE3_D	CS1	
	MODULE3_In	CS1	
	MODULE4_D	CS1	
	MODULE4_In	CS1	
	MODULES_D	CS1	×
,			
	确定	取消	

图 7-2 位号重名警告

4. 载入一个单站后如图 7-3 所示。

B GCS	控制站 位号 导入策略 快速分组				
	属性	值			
	□ 控制站配置				
	WID	0000000-0000-0000-000000000000000000000			
	控制站名	CSO			
	描述				
	位号前缀				
	启用设备	YES			
	启用PID报警	YES			
	工程	GCU331			
	组态路径	D:\00 InstallPackage\GCU331\GCU331.xml			
	通讯路径				
	□ 通讯网络配置				
	т. х	ווים עדפרדמון מו	-		

图 7-3 添加单站

5. 在"控制站"页签下对控制站基本上属性进行设置。

表 7-1 属性设置说明

参数名	含义	说明
控制站配置		
UUID	GCS 组态的唯一标识	系统自动生成,不可编辑
控制站名	GCS 控制站名称	 字符串形式,长度范围为1~128 只能包含数字、英文字母、"_"、"-" 在一个工程内控制站名不可重复
描述	控制站的描述内容	字符串形式,长度范围是 0~64
位号前缀	用来区分控制站里面重复的位 号名	 字符串形式,长度范围为1~128 只能包含数字、英文字母、"_"、"-" 用来区分控制站里重复的位号名字,不能二次编辑
启用设备	是否启用当前设备	YES: 启用当前设备; NO: 禁用当前设备
启用 PID 报警	是否同步 GCSConrix 组态的报 警信息	YES: 同步; NO: 不同步 在同步报警的过程中,软件会判断报警信息的限值是否 超出位号量程。如果超出,则不同步该报警信息;如果 不超出,则同步报警信息
工程	GCS 组态的工程名	不可编辑
组态路径	GCS 组态文件所在的目录	系统自动生成。当组态路径改变时,选中单元格后单击 出现的···按钮重新选择组态路径
通讯路径	目的控制站到直连控制站之间 的通讯路径	系统自动生成,不可编辑
通信网络配置		

参数名	含义	说明
版本	驱动与底层控制器通讯协议版 本	 UCP_VERSION_01: 仅支持局域网通信 UCP_VERSION_02: 支持跨网段通信,同时兼容局域网通信
设备 A/B 网 IP	GCS 控制器的以太网接口地址 (A/B 网口)	 局域网通讯:版本选择为"UCP_VERSION_01"并 设置 A 网设备 IP。此时 GCS 控制器和服务器应该 在同一个网段内 跨网段通讯:版本选择为"UCP_VERSION_02", A/B 网设备 IP 互为网络冗余,设备 IP 第三个字节 不能大于 64
服务器 A 网 IP	与控制器通讯的服务器 A 网 IP 地址	版本选择为"UCP_VERSION_02"可设置,点分十进制 形式
服务器 B 网 IP	与控制器通讯的服务器 B 网 IP 地址,无 B 网可不配置	版本选择为"UCP_VERSION_02"可设置,点分十进制 形式
冗余服务器 A/B 网 IP	与控制器通讯的冗余服务器 A/B网IP地址	版本选择为"UCP_VERSION_02"可设置,点分十进制 形式。如果没有冗余服务器,可留空
设备冗余	G3 系列控制器一般不冗余,G5 系列控制器可以冗余,修改冗余 属性时请确认和实际运行控制 器状态一致	在下拉列表中选择"YES"表示冗余,"No"表示非冗余。 设备冗余 IP 规则:如果 A 网 IP 最后一个字节为偶数, 则冗余 IP+1;如果 A 网 IP 最后一个字节为奇数,冗余 IP-1
A/B 网周期(单位: 毫秒)	控制站扫描周期	最小为 200ms,最大为 86400000ms。
A/B 网超时	等待回复超时时间	范围: 1000-86400000ms
A/B 网重试次数	超时后重新发包次数	范围: 1-30次

- (F)
- 提示: ● 如果使用跨网段通讯,则配合使用的 GCS 控制器和 GCSContrix 软件应满足的最低版本要求
 - 为 GCU521-S V14.16.00、GCU3001-S V12.14.00 和 GCSContrix V1.90.01.00。
- ▶ 以 A 网为例,断线时间的计算公式如下: A 网断线时间=A 网周期×A 网重试次数
- 在"位号"页签下选择需要导入的结构位号以及自动生成的诊断位号。"位号"页签下可对位号 进行过滤,过滤使用方法具体见位号过滤章节内容。
- 7. 在"导入策略"中设置某个结构位号下导入哪些节点。只有在组态树中选择"GCS"节点时, 导入策略才可设置,若选中其下的控制站节点则只能查看。
- 在"快速分组"中对位号进行分组,并设置分组位号的扫描周期。只有在组态树中选择"GCS" 节点时,才可设置分组位号的扫描周期。"已选位号"框内位号按照此页设置的"扫描周期"进 行通信,"可选位号"框内位号按照控制站配置中的扫描周期进行通信。
- 9. 设置完成后,单击"保存",完成 GCS 驱动配置。

7.2 配置驱动位号的I/O地址

配置 GCS 驱动后,可以手动添加 GCS 位号。手动添加位号的方法请详见《数据库管理软件使用手册》或《中控数据采集器软件使用手册》,本小节仅描述如何配置位号的 IO 地址。

1. "IO地址选择"界面如图 7-4 所示。

			×
头时数据 设备诊断 选择控制器: C50 位号名 CS3_Controller_D CS3_Controller_In CS3_MODULE1_D CS3_MODULE2_D CS3_MODULE2_In CS3_MODULE2_Out CS3_TAG0	▼ 位号类型 GCU521_D[2]_2 GCU521_In AI751_D AI751_In AO751_D AO751_In AO751_Out BOOL	Controller_D CfgError DeviceID DiagInfoState HardwareTimerError InputTagForce IoBusError KeyMode Led_COMM Led_DUPLEX Led_FAULT Led_PORT1 Led_PORT2 Led_STATUS	<
10地址:			
		确认	取消

图 7-4 IO 地址选择对话框(GCS 驱动位号)

2. IO 地址可设置为实时数据或者诊断信息。

实时数据:在"实时数据"页签中选择控制器后,左边界面列出属于该控制器的位号,右边界 面列出当前位号的所有字段,用户可根据实际需要组态。选中一个字段后,单击"确定",即可设置 完 IO 地址并返回到位号配置窗口。

诊断信息: 在"设备诊断"页签中选择控制器及诊断的信息,可以配置该位号为指定控制器的 诊断信息位号,诊断信息状态值如表 7-2 所示。

诊断信息	功能	状态:值
设备通信状态	提供控制器的通信状态信息	通信断开: 0 (OFF) 通信正常: 1 (ON)
组态一致	提供上下位机,控制器组态一 致性判断功能	组态不一致: 0 (OFF) 组态一致: 1 (ON)
A网状态	提供A网通信状态信息	A 网断开: 0 (OFF) A 网正常: 1 (ON)

表 7-2 诊断位号状态值

诊断信息	功能	状态:值
B 网状态	提供 B 网通信状态信息	B网断开:0(OFF) B网正常:1(ON)

3. 位号属性设置完成后,单击"确定",返回软件主界面。

位号名	美型 1/0		1/03國	b	I/O地址	
在此处输 🍸	在此处输 、	7	在此	Y	在此处输入文字	Y
ADiag001	实型		GCS		#CS0.CFG_CONSISTENT	
AI001	实型		GCS		CS0.MODULE1_In.AI_CH1	

图 7-5 成功添加 GCS 位号

如 图 7-5 所示, GCS位号实时数据I/O地址采用"控制器名.位号名.字段名"的形式,诊断信息 I/O地址采用"#控制器名.诊断信息"的形式。

8 G5Pro驱动

通过 G5Pro 驱动,调用方可以实现 G5Pro 系统的接入。

8.1 配置驱动

添加 G5Pro 驱动后,需要按照如下步骤配置 G5Pro 驱动。

1. "G5Pro驱动配置"界面如图 8-1 所示。

位号名大小写:是否将G5Pro组态的位号名转换为大写。YES表示启用,NO表示禁用。如果启用,则组态中载入的位号名中的字母会被转换为大写;如果禁用,则保持原样。

G5Pro 驱神置				_	×
文件(F) 编辑(E)					
🛛 🗳 🚳 🖉					
B	控制	站 位号 导入策略 快速分组			
	属	<u></u>	值		
		控制站总体信息			
		控制站个数	1		
		位号名大写	NO		

图 8-1 G5Pro 驱动配置界面

- 2. 单击"载入单站"按钮,选择一个.xPrj文件打开。单击"载入多站"按钮,选择一个.SysPrj 文件打开,在弹出的选择控制站中选择要导入的控制站即可导入多个控制站。导入时,若检测 到位号重名,则将弹出如图 8-2 所示的界面显示重名位号及其控制站名,并可进行以下操作。
 - 若需继续导入,则单击"确定",软件将以"前缀_位号名"的形式进行导入。前缀默认为 控制站名,双击单元格可修改(如下图红框所示)。自定义前缀必须以数字或者字母开头, 允许使用英文字母、数字、"-"或"_",不超过128个字符,不能重复。
 当控制站名被更改后,"数据库管理软件"中将提示是否更新已存在的位号信息,单击"是"
 即可同步前缀信息。位号前缀被更改后,无需手动调整已被流程图、报警等引用的位号。
 - 若单击"否",则取消导入。

位号					
以 ()	以下控制站点存在重名位号,需要添加前缀,默认为控制站名: (选择"取消"则本次不导入)				
	控制站名 前缀				
	CS1	[C51]			
		双击り修成			
,					
协会	期24岁年友位号加下。				
171	则如泉里·有位与如下•				
	位号名	控制站名	^		
	Controller_D	CS1			
	MODULE10_D	CS1			
	MODULE10_In	CS1			
	MODULE11_D	CS1			
	MODULE11_In	CS1			
	MODULE1_D	CS1			
	MODULE1_In	CS1			
	MODULE2_D	CS1			
	MODULE2_In	CS1			
	MODULE3_D	CS1			
	MODULE3_In	CS1			
	MODULE4_D	CS1			
	MODULE4_IN	CS1			
	MODULES_D	CS1	¥		
,					
	确定	取消			

图 8-2 位号重名警告

3. 载入一个单站后如图 8-3 所示。

B GSPro G	空制	站 位号 导入策略 快	速分组
•	属	<u>生</u>	值
		控制站配置	·
		WID	C81CD3E4-080C-4B75-A469-5392E47C3D8A
		控制站名	CSO
		控制器型号	GCV5001-S
		描述	
		位号前缀	
		启用PID报警	YES
		工程	G5pro
		组态路径	D:\Configuration\G5pro\G5pro.xml
		通讯路径	
	Ð	通讯网络配置	

图 8-3 添加单站

4. 在"控制站"页签下对控制站基本上属性进行设置。

表 8-1 属性设置说明

参数名	含义	说明
控制站配置		
UUID	G5Pro 组态的唯一标识	系统自动生成,不可编辑。
控制站名	G5Pro 控制站名称	 字符串形式,长度范围为1~128。 只能包含数字、英文字母、"_"、"-"。 在一个工程内控制站名不可重复。
控制器型号	G5Pro 控制器型号	不可编辑
描述	控制站的描述内容	字符串形式,长度范围是0~64。
位号前缀	用来区分控制站里面重复的位号 名	 用来区分控制站里重复的位号名字,不可二次编辑 ● 字符串形式,长度范围为1~128 ● 只能包含数字、英文字母、"_"、"-"
启用 PID 报警	是否同步 GCSConrix 组态的报警 信息	YES: 同步; NO: 不同步 在同步报警的过程中,软件会判断报警信息的限值是否超 出位号量程。如果超出,则不同步该报警信息;如果不超 出,则同步报警信息
工程	G5Pro 组态的工程名	不可编辑
组态路径	G5Pro 组态文件所在的目录	系统自动生成。当组态路径改变时,选中单元格后单击出 现的···按钮重新选择组态路径。
通讯路径	目的控制站到直连控制站之间的 通讯路径	系统自动生成,不可编辑。
通信网络配置		

参数名	含义	说明
版本	驱动与底层控制器通讯协议版本	 UCP_VERSION_01: 仅支持局域网通信 UCP_VERSION_02: 支持跨网段通信,同时兼容局域网通信
设备 A/B 网 IP	G5Pro 控制器的以太网接口地址 (A/B 网口)	 局域网通讯:版本选择为"UCP_VERSION_01"并 设置 A 网设备 IP。此时 G5Pro 控制器和服务器应该 在同一个网段内 跨网段通讯:版本选择为"UCP_VERSION_02", A/B 网设备 IP 互为网络冗余,设备 IP 第三个字节不 能大于 64
服务器 A 网 IP	与控制器通讯的服务器 A 网 IP 地址	版本选择为"UCP_VERSION_02"可设置,点分十进制形式
服务器 B 网 IP	与控制器通讯的服务器 B 网 IP 地址,无 B 网可不配置	版本选择为"UCP_VERSION_02"可设置,点分十进制形式
冗余服务器 A/B 网 IP	与控制器通讯的冗余服务器 A/B 网 IP 地址	版本选择为"UCP_VERSION_02"可设置,点分十进制形式。如果没有冗余服务器,可留空
设备冗余	修改冗余属性时请确认和实际运 行控制器状态一致	在下拉列表中选择"YES"表示冗余,"No"表示非冗余。 设备冗余 IP 规则:如果 A 网 IP 最后一个字节为偶数,则 冗余 IP+1;如果 A 网 IP 最后一个字节为奇数,冗余 IP-1
A/B 网周期(单 位:毫秒)	控制站扫描周期	最小为 10ms,最大为 86400000ms。
A/B 网超时	等待回复超时时间	范围: 1000-86400000ms
A/B 网重试次数	超时后重新发包次数	范围: 1-30次

- 提示:
 - 如果使用跨网段通讯,则配合使用的 G5Pro 控制器和 GCSContrix 软件应满足的最低版本要求 为 GCU5001-S V10.11.00 和 GCSContrix V1.90.01.00。
 - 以A网为例,断线时间的计算公式如下: A网周期×A网重试次数≤A网断线时间≤A网周期×A网重试次数+500ms
- 5. 在"位号"页签下选择需要导入的结构位号以及自动生成的诊断位号。"位号"页签下可对位号 进行过滤,过滤使用方法具体见位号过滤章节内容。
- 6. 在"导入策略"中设置某个结构位号下导入哪些节点。只有在组态树中选择"G5Pro"节点时, 导入策略才可设置,若选中其下的控制站节点则只能查看。
- 在"快速分组"中对位号进行分组,并设置分组位号的扫描周期。只有在组态树中选择"G5Pro" 节点时,才可设置分组位号的扫描周期。"已选位号"框内位号按照此页设置的"扫描周期"进 行通信,"可选位号"框内位号按照控制站配置中的扫描周期进行通信。
- 8. 设置完成后,单击"保存",完成 G5Pro 驱动配置。

8.2 配置驱动位号的I/O地址

配置 G5Pro 驱动后,可以手动添加 G5Pro 位号。手动添加位号的方法请详见《数据库管理软件 使用手册》或《中控数据采集器软件使用手册》,本小节仅描述如何配置位号的 IO 地址。

1. "IO地址选择"界面如图 8-4 所示。

图 8-4 IO 地址选择对话框(G5Pro 驱动位号)

2. IO 地址可设置为实时数据或者诊断信息。

实时数据: 在"实时数据"页签中选择控制器后, 左边界面列出属于该控制器的位号, 右边界 面列出当前位号的所有字段, 用户可根据实际需要组态。选中一个字段后, 单击"确定", 即可设置 完 IO 地址并返回到位号配置窗口。

诊断信息: 在"设备诊断"页签中选择控制器及诊断的信息,可以配置该位号为指定控制器的 诊断信息位号,诊断信息状态值如表 8-2 所示。

诊断信息	功能	状态:值
设备通信状态	提供控制器的通信状态信息	通信断开: 0 (OFF) 通信正常: 1 (ON)
组态一致	提供上下位机,控制器组态一 致性判断功能	组态不一致: 0 (OFF) 组态一致: 1 (ON)
A 网状态	提供 A 网通信状态信息	A 网断开: 0 (OFF) A 网正常: 1 (ON)

表 8-2 诊断位号状态值

诊断信息	功能	状态:值
B 网状态	提供 B 网通信状态信息	B 网断开: 0 (OFF) B 网正常: 1 (ON)

3. 位号属性设置完成后,单击"确定",返回软件主界面。

位号名		类型		1/0驱动		I/O地址	
在此处输	Y	在此	Y	在此处…	Y	在此处输入文字	Y
TAG		实型	G5Pro			CS0.MODULE11_In.Al_	CH1
TAG1 实型		G5Pro #CS0.DEVICE_ST		#CS0.DEVICE_STATUS			

图 8-5 成功添加 G5Pro 位号

如 图 8-5 所示,G5Pro位号实时数据I/O地址采用"控制器名.位号名.字段名"的形式,诊断信息I/O地址采用"#控制器名.诊断信息"的形式。

9 CDT驱动

CDT 驱动主要应用于电网数据采集与监控系统中,对远动设备进行管理。配置 CDT 驱动前, 首先要创建 CDT 驱动。

9.1 配置驱动

添加 CDT 驱动后,通过以下步骤配置 CDT 驱动:

1. "CDT驱动设置"界面如图 9-1 所示。

CDT 驱动配置 🔀 🔀 🔀 🕺				
🖬 🏮 🏯 🗡				
CDT Driver	属性	值		
	日属性			
	Channel数	0		
I	J			

图 9-1 CDT 驱动配置初始界面

2. 添加Channel,并配置Channel属性。

在"CDT组态设置"窗口的结构树上选择"CDT Driver",并在其右键菜单中选择"添加Channel" 命令,CDT驱动配置窗口显示为图 9-2 所示。

CDT 驱动配置		
🖬 👂 🏯 🗙		
CDT Driver	属性	值
	□ 属性	
	名称	CHANNELO
	描述	
	COM	1
	波特率	19200
	数据位	8
	停止位	1
	校验	None

图 9-2 在 CDT 驱动中添加 Channel

图 9-2 所示界面中各参数的说明如表 9-1 所示。

表 9-1 CDT 通道参数说明表

参数名	含义	操作方法
名称	通道名。字符串形式,长度范围是1~64。	在文本框中输入。不可重复
描述	通道的描述信息。字符串形式,长度范围是0~64。	在文本框中输入。
СОМ	通道占用的 COM 口号。整数形式,取值范围是 1~256。	在文本框中输入。

参数名	含义	操作方法
波特率	通道工作的波特率。	在下拉列表中选择。
数据位	在传输和接受每个字符时使用的数据位数,可选参数为7或8。	在下拉列表中选择。
停止位	传输每个字符之间的时间,按位/秒测量时间,可选参数为1和2。	在下拉列表中选择。
校验	 端口的错误检查类型。可选参数包括: None,表示从此端口发送的数据位不添加奇偶校验位。 Even,表示如果要使数据位中1的个数为偶数,则奇偶校验位应置为1。 Odd,表示如果要使数据位中1的个数为奇数,应添加奇偶校验位。 Mark,表示添加奇偶校验位,但总是被设置为0。 Space,表示添加奇偶校验位,但总是被设置为1。 	在下拉列表中选择。

3. 向Channel中添加子站

在上图的结构树中选择Channel,并在其右键菜单中选择"添加子站"命令。CDT组态设置窗口显示为图 9-3 所示。

- 1) 在"名称"文本框中输入子站的名称。字符串形式,长度范围是1~64。
- 2) 在"描述"文本框中输入子站的描述。字符串形式,长度范围是 0~64。
- 3) 在"子站 ID"下拉框中选择子站的 ID。整数形式,取值范围是 1~255。

CDT 驱动配置					
🖬 👂 🏯 🗡					
	属性	值			
	日周性				
	名称	SUBSTATIONO			
	描述				
	子站ID	1			

图 9-3 在 CDT 通道中添加子站

4. 完成 CDT 驱动配置后,单击工具栏中的Ⅱ,保存对 CDT 驱动的配置。

9.2 配置驱动位号的I/O地址

配置 CDT 驱动后,可以手动添加 CDT 位号。手动添加位号的方法请详见《数据库管理软件使用手册》或《中控数据采集器软件使用手册》,本小节仅描述如何配置位号的 IO 地址。

1. "IO地址指定"界面如图 9-4 所示。

10地址指定	X				
实时数据					
设备指定	「详细指定				
通道:	类型:				
	帧类别码:				
子站:	功能码:				
	顺序号:				

图 9-4 CDT 位号地址配置窗口

图 9-4 中各参数的详细说明及其配置方法如下:

1) 在"通道"下拉框中选择位号占用的通道。

2) 在"子站"下拉框中选择位号占用的子站。

3) 在"类型"下拉框中选择位号的类型,可选参数包括"遥测"、"遥信"、"电能脉冲"和"SOE"。

其中"SOE"表示时间顺序记录(Sequence of Event)。

4) 在"帧类别码"下拉框中选择位号的帧类别码。可选参数包括:

▶ 当"类型"选择"遥测"时,可选参数为97、179和194。

▶ 当"类型"选择"遥信"时,可选参数为244。

▶ 当"类型"选择"电动脉冲"时,可选参数为133。

▶ 当"类型"选择"SOE"时,可选参数为38。

- 5) 在"功能码"下拉框中选择位号的功能码。
 - ▶ 当"类型"选择"遥测"时,可选参数为0~127。
 - ▶ 当"类型"选择"遥信"时,可选参数为240~255。
 - ▶ 当"类型"选择"电动脉冲"时,可选参数为160~223。
 - ▶ 当"类型"选择"SOE"时,可选参数为128 和129。
- 6) 在"顺序号"下拉框中选择位号的顺序号。
 - ▶ 当"类型"选择"遥测"时,可选参数为0和1。
 - ▶ 当"类型"选择"遥信"时,可选参数为0~31。
 - ▶ 当"类型"选择"电动脉冲"时,可选参数为0。
 - ▶ 当"类型"选择"SOE"时,可选参数为0~4095。

7) 单击"确定"保存对 CDT 位号的设置。

2. 返回到 CDT"添加位号"对话框,单击其中的"确认",保存 CDT 位号的设置。

位号名		类型		I/O驱动		I/0地址	
在此	\mathbb{Z}	在	\mathbb{Z}	在	\mathbb{Z}	在此处输入文字	Y
Å		整型		CDT		CHANNELO. SUBSTATIONO. 0. 97. 0. 0	

图 9-5 成功添加 CDT 位号

如图 9-5 所示, CDT位号IO地址采用"通道名.子站名.0.帧类别码.功能码.顺序号"的形式。

10 TCS-900 驱动

提示:

安装 SIS 组件包(SISPatch)后,才可配置 TCS-900 驱动。通过 TCS-900 驱动,调用方可以实现 TCS-900 系统的接入。

<u>ک</u>

TCS-900 驱动需要单独的授权。有授权时可以添加驱动,无授权时不能添加驱动。

10.1 配置驱动

添加 TCS-900 驱动后,需要按照如下步骤配置 TCS-900 驱动。

1. "TCS驱动配置"界面如图 10-1 所示。

TCS 驱动配置				<u> </u>
文件 (2) 编辑 (2)				
🖬 🗞 🎓 🖄 🗙				
	空制。	は 位号		
	属	ŧ	值	
	Ξ	控制站总体信息		
		控制站个数	0	

图 10-1 TCS 驱动配置界面

2. 单击"载入"按钮 ,选择一个.sisPrj文件打开,载入后如图 10-2 所示。

E TCS □	控制	站(位号))	
	属	性	值
	Ξ	控制站配置	
		控制站名	TS0.2
		描述	
		工程	TEST
		IP地址	172.20.0.2
		组态路径	D:\TCSData\TEST.sisPrj
		位号前缀	
		位号名大小写转换	不转换

图 10-2 添加单站

3. 在"控制站"页签下对控制站基本属性进行设置。

参数名	含义	说明
		字符串形式,长度范围为1~128。
控制站名	TCS 控制站名称	只能包含数字、英文字母、"_"、"-"和"."。
		在一个工程内控制站名不可重复。
描述	控制站的描述内容	不可编辑
工程	TCS 组态的工程名	不可编辑
IP 地址	与主干网直连的控制站 IP 地址	不可编辑
组态路径	TCS 组态文件所在的目录	系统自动生成,可编辑
		字符串形式,长度范围为1~128,只能包含数
位号前缀	用来区分控制站里面重复的位号名	字、英文字母、"_"、"-",保存后不能二次编
		辑
位号夕大小写转换	田干设置是否自动转换位号名的大小写	从下拉菜单选择"不转换"、"大写"或"小写",
		保存后不能二次编辑

表 10-1 属性设置说明

- 在"位号"页签下选择需要导入的位号。"属性"列表示位号属性, IO 地址的前缀控制站名随 控制站名的更改而更改,修改方法与 GCS 驱动一致。位号表首行中输入过滤信息后,可过滤出 相关位号。
- 5. 设置完成后,单击"保存",完成 TCS-900 驱动配置。

10.2 配置驱动位号的I/O地址

配置 TCS 驱动后,可以手动添加 TCS 位号。手动添加位号的方法请详见《数据库管理软件使用手册》或《中控数据采集器软件使用手册》,本小节仅描述如何配置位号的 IO 地址。

1. "IO地址选择"界面如图 10-3 所示。

位号名	位是类型	•
C7102A EV1	BOOL	
C7102A_EV2	BOOL	
C7102B FV1	BOOL	
C7102B FV2	BOOL	
CB1	BOOL	
CB2	BOOL	
CI1	INT	
CNDO0111	BOOL	
CNDO0112	BOOL	
CNDO0113	BOOL	
CNDO0114	BOOL	
CNDO0115	BOOL	
CNDO0116	BOOL	
CNDO0117	BOOL	_
21000110	800	

图 10-3 IO 地址选择对话框(TCS 驱动位号)

2. IO 地址可设置为实时数据或者诊断信息。

实时数据: 在"实时数据"页签中选择控制器后,界面列出属于该控制器的位号,用户选中一个位号后,单击"确定",即可设置完 IO 地址并返回到位号配置窗口。

诊断信息:在"设备诊断"页签中选择诊断的信息,可以配置该位号为指定控制站模块的诊断 信息位号。诊断信息状态值请参见 TCS-900 系统软件资料《SISPatch 使用手册》。在载入组态文件时, 会同步载入诊断位号的报警配置。

3. 位号属性设置完成后,单击"确定",返回软件的主界面。

位号名 I/O驱动 类型		类型	I/0地址
在此 🔽	在 🍸	在了	在此处输入文字
AI_1_8_1	TCS-900	实型	TS3.120AI_1_8_1
ZHENDUAN	TCS-900	实型	TS3.120_DIAG_RACK_SYS_POWER_A_03_012_01

图 10-4 成功添加 TCS 位号

如 图 10-4 所示, TCS位号实时数据I/O地址采用"控制站名@位号名"的形式,诊断信息I/O地 址采用"控制站名@诊断位号名"的形式。

11 Trusted Modbus TCP驱动

通过 Trusted Modbus TCP 驱动,调用方可以实现与 Trusted 系统的连接。

11.1 配置驱动

添加 Trusted Modbus TCP 驱动后,需要按照如下步骤配置 Trusted Modbus TCP 驱动。

1. "Trusted Modbus TCP驱动配置"界面如图 11-1 所示。

rusted Modbus TCP 驱动配置 ×							
文件(F) 编辑(E)							
) 🖬 📑 🚢 🗙 🔊							
Errested Modbus TCP	设备 位号]						
	属性	值					
	□ 兆动 名称	Trusted Modbus TCP					
	描述	SUPCON					
	□ 基本信息						
	设备数	0					
	1						

图 11-1 Trusted Modbus TCP 驱动配置界面

- DEFAULT 为默认的设备分组,不能被删除,也不能修改分组名。
 单击■可以新增分组,单击➤可以删除选中的分组。选中分组后可以在右侧界面中修改分组名, 名称不能为空,可包含字母、数字、短横杠(-)或下划线(_),不超过 64 个字符,不能重复。
- 3. 选择一个分组后,左键单击 选按钮或单击菜单栏【编辑/添加设备】,添加设备后如 图 11-2 所示。

Trusted Modbus TCP	设备 位号	
	属性	值
	□ 设备	· · · · · · · · · · · · · · · · · · ·
	名称	DEVICE1
	描述	
	启用设备	是
	□ 主设备	
	<u></u> ≟IP	0.0.0.0
	主端口	502
	冗余IP	0.0.0.0
	冗余端口	502
	设备ID	1
	超时(ms)	1000
	重试次数	3
	重试延时(ms)	1000
	田 冗余设备	
	∃ 其他设置	

图 11-2 设备参数配置

4. 添加设备后设置相应参数,参数说明如表 11-1 所示。

表	11-1	通道参数说明	抈

分类	参数名	含义	说明	
名称 设备的名称 设备		设备的名称	 名称由英文字母、数字、-、_组成,最长为64 个字节 设备名称不允许重复 	
	描述	设备描述信息	最长为 64 个字节	
	启用设备	是否启用当前设备	选"是"启用当前设备,选"否"禁用当前设备	
	主IP	主设备主 IP 地址	-	
	主端口	主设备主 TCP 端口号	范围: 1~65535	
	冗余 IP	主设备冗余 IP 地址	-	
	冗余端口	主设备冗余 TCP 端口号	范围: 1~65535	
	设备 ID	设备从站 ID	范围: 1~247	
主设备	超时(ms)	主站发送命令后至命令 响应之间的最长等待时 间	范围: 0~86400000ms	
	重试次数	命令响应超时后重试发 送命令的次数	范围: 0~10000	
	重试延时	数据包超时后,到下一 数据包发送之间的时间	范围: 0~86400000ms	
冗余设备*	启用冗余	启用冗余设备	主设备故障时,自动切换到冗余设备是:启用冗余;否:不启用冗余	
	输出类型	写数据模式,有三种写 模式	 Single_Write 和 Group_Write: 单地址使用 5、6 号单写命令,多地址使用 15、16 号组写命令 Force_Group_Write: 强制使用 15、16 号组写 命令 	
其他设置	数据位规则	设置成与指定设备数据 的大小端相一致	 bit0_15: 大端模式(低位在前) bit15_0: 小端模式(高位在前) 	
	发包规则	选 择 该 设 备 内 各 BLOCK 数据包的发送 模式	并行或串行可选	
	轮 询 周 期 (ms)	数据包连续发送时的间 隔时间	数据包连续发送的间隔时间,范围: 50~86400000	

*冗余设备其他参数与主设备相同,不再赘述。

5. 选中 DEVICE 节点,右键点击,并在菜单中选择"导入位号",可将 Trusted 系统中导出的位号 (TXT 格式文件需另存为 CSV 格式后)直接导入,导入后可在"位号"页签中对位号进行查看 和编辑。也可通过"导出位号"功能,将位号导出成 CSV 格式文件。 Trusted 系统导出的 TXT 格式文件另存为 CSV 格式后,只需要保留三列,第一列:位号名,第 二列:数据类型,第三列:描述。当位号为模拟量时,需要在每个偏移地址后加入空格和表示 数据类型的标志位。CSV 文件内容格式和导入位号后的对应关系如下图所示。

	A	B		C
1	TrustedModbusTCP	Version	Descrip	otion
2	NEWADD2_UINT	400	001 模拟量	无字幕表示16位无符号
3	NEWADD2_INT	400002	S S表示1	6位有符号
4	NEWADD2_DINTI	400003	表示32	2位有符号
5	NEWADD2_DINTL	400005	L表示3	2位有符号
6	NEWADD2_REAL	400007	F F表示F	loat浮点型
7	NEWADD2_UDINT	400009	U U表示3	32位无符号
8	NEWADD2_BOOL	1	001 开关量	1
第一列:位号名称第二列:偏移地址第三列:位 +数据类型标志位 设备位号				9:位号描述
	名称	类型	IO地址	描述
	在此处输入文字 🏾 🍸	在 🍸	在此处… 🍸	在此处输入文字 7
N	IEWADD2_UINT	UINT	400001	模拟量无字幕表示16位无符号
N	IEWADD2_INT	INT	400002	S表示16位有符号
N	IEWADD2_DINTI	DINT	400003	1表示32位有符号
N	IEWADD2_DINTL	DINT	400005	L表示32位有符号
N	IEWADD2_REAL	REAL	400007	F表示Float浮点型
N	IEWADD2_UDINT	UDINT	400009	U表示32位无符号

图 11-3 CSV 文件格式和导入后的信息对比

6. 组态完设备后点击 🖬 保存。 提示:

点击》按钮可弹出全局设置对话框,可以选择在进行删除操作的时候是否需要确认提示。每次打开 驱动配置界面时,该设置项默认为"删除前需要确认提示",如不需要可去除选项前的勾选状态。

11.2 配置驱动位号的I/O地址

配置 Trusted Modbus TCP 驱动后,可以手动添加 Trusted Modbus TCP 位号。手动添加位号的方 法请详见《数据库管理软件使用手册》或《中控数据采集器软件使用手册》,本小节仅描述如何配置 位号的 IO 地址。

1. "IO地址选择"界面如图 11-4 所示。

IO地址选择	\times
实时数据 诊断信息	
IO地址选择	
] j

图 11-4 IO 地址设置(Trusted ModbusTCP 驱动)

- 2. I/O 地址可设置为实时数据或诊断信息,设置完成后点击"确定"。
 - 实时数据:在"实时数据"页签中选择设备、地址和数据类型。
 - I/O 地址为6位数字,由寄存器类型和位号地址组成,填写错误时请仔细阅读提示信息。
 - ▶ 首位表示寄存器类型,如表 11-2 所示。后五位为位号地址,设置范围为 1~999999。
 - ▶ BOOL 类型位号的地址首位应是 0 或 1,非 BOOL 类型位号的地址首位应是 3 或 4。

表 11-2 I/O 地址配置

寄存器类型	地址区间	位号读写属性
线圈(COIL)	1~99999	可读、可写
离散量输入(DISCRETES INPUT)	100001~199999	只读
输入寄存器(INPUT REGISTER)	300001~399999	只读
保持寄存器(HOLDING REGISTER)	400001~4999999	可读、可写

- ▶ 对于非 BOOL 类型位号,在6位地址后会加上字母后缀,代表不同的数据类型。对应 关系为: INT 类型,后缀 "S"; UINT 类型,无后缀; DINT 类型,后缀 "I"; UDINT 类型,后缀 "U"; REAL 类型,后缀 "F"。
- 诊断信息:在"诊断信息"页签中选择设备及诊断的信息,诊断信息状态值如表 11-3 所示。

诊断信息	功能	状态:值
设备通信状态	提供基于通讯的诊断信息	通信断开:0 当前工作链路为主设备主IP:1 当前工作链路为主设备从IP:2 当前工作链路为冗余设备主IP:3 当前工作链路为冗余设备从IP:4

表 11-3 诊断位号状态值

3. 完成位号属性设置后,单击"确定",返回软件主界面。

位号名	类型	I/O驱动	I/0地址
在此处输入 🍸	在… 🍸	在此处输入文字 🔽	在此处输入文字
TRUSTED-TCP1	实型	Trusted Modbus TCP	#DEVICE1. DEVICE_STATE
TRUSTED-TCP2	实型	Trusted Modbus TCP	DEVICE1.2

图 11-5 成功添加 Trusted Modbus TCP 位号

如 图 11-5 所示, Trusted Modbus TCP位号的实时数据I/O地址采取"设备名.IO地址"的形式, 诊断信息I/O地址采取"#设备名.诊断信息"的形式。

11.3 参数说明

Trusted Modbus TCP位号类型的详细描述如表 11-4 所示。

类型	描述	数据位	取值范围
BOOL	布尔型	1	0~1
INT	整型	16	-32768~32767
DINT	双整型	32	$-2^{32} \sim 2^{32} - 1$
UINT	无符号整型	16	0~65535
UDINT	无符号双整型	32	$0 \sim 2^{32}$ -1
REAL	单精度浮点型	32	$-2^{32} \sim 2^{32} - 1$

表 11-4 位号类型详细描述表

12 NodeSniffer驱动

通过 NodeSniffer 驱动可以配置诊断位号,从而实现对本地或者远端的设备的通信诊断。诊断信息主要是判断设备是否连接。

添加 NodeSniffer 驱动后,添加 NodeSniffer 位号,位号类型建议配置为开关量,数值为零(OFF) 表示断开,为非零(ON)表示连接。位号的 IO 地址配置界面如所示。

10地址设定		×
IP地址:	0.0.0.0	
端口号:	35666	
超时(ms):	5000	
重试次数:	3	
	福定 取消	

图 12-1 IO 地址设定

"IO 地址"的配置采用如下格式"IP:Port:Timeout:Retry", IO 地址必须满足以下要求,否则会提示地址错误。

- IP 地址(IP):为需要诊断设备的 IP。 诊断驱动通过位号配置的 IP 地址和端口与服务端建立连接。
- 端口号 (Port): 默认为 35666,端口号大小范围是 1025-65535。
- 诊断驱动是否在超时时间内收到过服务端返回来的数据包 超时时间为"Timeout×(Retry+1)",其中超时(Timeout)大小范围为 500 毫秒~86400000 毫秒,重试次数(Retry)范围为 1~9。

13 ABCONTROLLOGIX驱动

ABCONTROLLOGIX 主要用于读取 Logix5000 系列控制器的数据。

13.1 配置驱动

添加 ABCONTROLLOGIX 驱动后,需要按照如下步骤配置 ABCONTROLLOGIX 驱动。

1. "ABCONTROLLOGIX驱动配置"界面如图 13-1 所示。

■ 驱动设置		_	×
文件(F) 编辑(E)			
X \$ 6 8			
DeviceRoot	设备 │位号 │ 导入策略│		(
	属性	值	
	日 设备总信息		
	设备总个数	0	

图 13-1 驱动配置界面

- DEFAULT 为默认的设备分组,不能被删除,也不能修改分组名。
 单击■可以新增分组,单击➤可以删除选中的分组。选中分组后可以在右侧界面中修改分组名, 名称不能为空,可包含字母、数字、短横杠(-)或下划线(_),不超过 64 个字符,不能重复。
- 3. 选择一个分组后,通过以下任意一种方式打开"打开"组态文件的界面。
 - 左键单击 → 按钮。
 - 左键单击菜单栏【编辑/载入设备】。

🕑 打开				×	
查找范围(I):	Configuration	•	🗢 🗈 💣 🖽	~	
-	名称 ^	修改日期	类型	大小	
快速访问	GAOMING_SCS_2020.	. 2021-10-15 8:59	L5×文件	2 55 K B	
桌面					
—					
库					
此电脑					
网络					
	文件名(N): GAOMING_SU	CS_20200925. V2. L5X	•	打开(0)	
	文件类型(T): 组态文件(*L5X)	•	取消	
	图 13-2 载入设备				

7

提示:

- 支持 V16、V19 和 V32 版本 AB 控制器软件配置的组态文件。
- DeviceRoot 节点下,最多可导入 1000 个组态文件。
- 驱动通信会使用 44818 端口。如果通信失败,请检查该端口是否被其他程序占用。
- 4. 选择L5X的组态文件后,点击"打开"。打开组态文件后的驱动配置界面如 图 13-3 所示,可对 "设备"和"位号"参数进行设置,并查看"导入策略"。

设备	位号 导入策略	
属	±	值
Ξ	设备信息	
	名称	GAOMEING_SCS
	设备类型	
	设备型号	1756-L72
	固件版本	19
	设备启用	YES
	描述	
	组态目录	D:\Configuration\GAOMING_SCS_20200925.V2.L5X
	设备IP	
	冗余设备IP	
	Slot	0
	通信端口	44818
	周期	1000
	位号名前缀	
	远程机架扩展参数	
	本地通讯IP	

图 13-3 打开组态文件

"设备"页签

参数说明如表 13-1 所示。

表 13-1 设备参数说明

参数名	含义	说明	
名称	设备的名称	 名称由英文字母、数字、横杠(-)或下划线(_)组成,最长为 64 个字节 设备名称不允许重复 	
设备类型	设备的类型	可设置为"ControlLogix"或"CompactLogix"	
设备型号	AB 控制器的型号	导入 L5X 组态文件时软件自动填写,不可修改	
固件版本	AB 控制器的版本	导入 L5X 组态文件时软件自动填写,不可修改	
设备启用	是否启用当前设备	YES: 启用当前设备; NO: 禁用当前设备	
描述	设备描述信息	最长为 64 个字节	
组态目录	组态文件的路径	打开组态文件时自动生成	
设备 IP	连接 PLC 设备的 IP	设备的 IP, 必须填写否则将不能进行其他任何操作	
冗余设备 IP	冗余设备的 IP	-	
Slot	Logix Slot Number	0~65535	
通信端口	设备通信端口	-	
周期	设备数据采集周期	100~3600000 (ms)	

参数名	含义	说明
位号名前缀	位号名前缀	 名称由英文字母、数字或下划线(_)组成,最长为42个字节 设备名称不允许重复
远程机架扩展 参数	远程机架模式时主机 架参数配置	远程机架模式时需要配置,配置格式为"2, X, 1, Y"。X表示主机架 控制模块地址,Y表示主机架 CPU 槽位号
本地通讯 IP	与 AB 控制器通信的 计算机 IP 地址	点分十进制形式。当计算机存在多个网卡时,需要指定 IP 地址

"位号"页签

位号页签界面如 图 13-4 所示, 位号列表中显示组态文件中包含的所有位号的位号名、类型、IO 地址、描述信息。用户可进行有选择的导入位号、过滤查找指定位号等操作。

设备	位号 导入策略				
可选择	可选择位号: 0 已选择位号: 415				
	名称	类型	IO地址	描述へ	
右宮	在此处输入文字 🛛 🍸	在此处输 🍸	在此处输入文字 🏾 🍸	在此处 🍸	
•	DEVICE_STATE_GAO	BYTE	#GAOMING_SCS.DEVI	设备通信状态	
	CLEAR_IN	TIMER	GAOMING_SCS.CLEAR		
	CLX_TO_PKS_DATA11	INT[200]	GAOMING_SCS.CLX_T		
	CLX_TO_PKS_DATA12	REAL[100]	GAOMING_SCS.CLX_T		
✓	CNBR1_2_C	AB:1756_DI:C:0	GAOMING_SCS.CNBR		
✓	CNBR1_3_C	AB:1756_DI:C:0	GAOMING_SCS.CNBR		
✓	CNBR1_4_C	AB:1756_DI:C:0	GAOMING_SCS.CNBR		
	CNBR1_5_C	AB:1756_DI:C:0	GAOMING_SCS.CNBR		
	CNBR1 7 C	AB:1756_DO:	GAOMING SCS.CNBR	×	
清豚	余过滤			不选择 选择	

图 13-4 位号页签

- 选择或不选择单个位号:单击位号列表中某行第一列的小方框,即可选择导入该位号,再次单击可取消勾选。
- 批量选择或不选择位号:单击某行选中,长按 Shift,再单击另一行,即可选中两个位号及 其间的多个连续位号;单击某行选中,长按 Ctrl,再多次单击任一行,即可选中多个不连 续的位号,选中后再单击"选择"或"不选择"即可批量进行选择或不选择操作。
- 过滤位号:第一行有漏斗 ☑符号的各个单元格内,输入过滤信息,按"Enter"键即可过滤 出相关位号。

注意: 第一列中只能输入"已选择"或"未选择";或点击**》**,弹出如下图所示界面,勾选所需选项,点击"确认",才能过滤出位号。

名称		类型	I
花 在此处输入文	字 7	在此处输	. 7
位号过虑			×
过滤条件: [
□ 已选择			
□ 未选择			
确认		取消	

图 13-5 位号过滤

"导入策略"页签

导入策略页签中,主要查看和设置某个结构位号下导入哪些节点。操作步骤如下: 1) 选中节点 "DeviceRoot",再翻至"导入策略"页签,如图 13-6 所示。

图 13-6 导入策略

- 2) 左侧选中某位号,右侧即可显示其下的所有节点,所有节点都默认导入。
- 3) 设置完成后,通过以下任意方式"保存"驱动配置。
- 单击工具栏 🖬 按钮。
- 单击菜单栏【文件/保存】。

13.2 配置驱动位号的I/O地址

配置 ABCONTROLLOGIX 驱动后,可以手动添加 ABCONTROLLOGIX 驱动位号。手动添加位号的方法请详见《数据库管理软件使用手册》或《中控数据采集器软件使用手册》,本小节仅描述如何配置位号的 IO 地址。

1. "IO 地址选择"界面如下图所示。

IO地址选择 实时数据 诊断信息			×
选择控制器: GAOMING_S	5CS 💌		
位号名	位号类型 🔺	CLEAR IN	
CLEAR IN	TIMER	PRE	
CLX TO PKS DATA11	INT[200]	ACC	
CLX TO PKS DATA12	REAL[100]	EN EN	
CNBR1:2:C	AB:1756 DI:C:0		
CNBR1:3:C	AB:1756 DI:C:0		
CNBR1:4:C	AB:1756 DI:C:0	DN	
CNBR1:5:C	AB:1756 DI:C:0		
CNBR1:7:C	AB:1756 DO:C:0		
CNBR1:8:C	AB:1756_DO:C:0		
CNBR1:I	AB:1756_CNB		
CNBR1:I.SLOT.2	AB:1756_CNB		
CNBR1:I.SLOT.3	AB:1756_CNB		
CNBR1:I.SLOT.4	AB:1756_CNB		
CNBR1:I.SLOT.5	AB:1756_CNB		
CNBR1:I.SLOT.7	AB:1756_CNB		
CMRD 1-T SLOT 8	0B-1756 CNR	1	
10地址:			
		确认	取消

图 13-7 IO 地址选择

- 2. IO 地址选择可设置为实时数据和诊断信息,设置完成后点击"确认"。
 - 实时数据:在"实时数据"页签中选择控制器后,左边界面列出属于该控制器的位号,右边界面列出当前位号的所有字段,用户可根据实际需要组态。选中一个字段后,单击"确定",即可设置完 IO 地址并返回到位号配置窗口。
 - 诊断信息:在"诊断信息"页签中选择设备及诊断的信息,诊断信息状态值如表 13-2 所示。

表 13-2 诊断位号状	态	直
--------------	---	---

	诊断信息	功能	状态:值
Ì	设备通信状态	提供基于通讯的诊断信息	通信断开: 0 当前工作链路为主设备主 IP: 1 当前工作链路为主设备从 IP: 2

3. 完成位号属性设置后,单击"确定",返回软件主界面。

位号名	类型	1/0驱动	1/0地址
在此处输入… 🍸	在此处… 🍸	在此处输入文字 🍞	在此处输入文字 7
ABTAG1	实型	ABCONTROLLOGIX	#GAOMING_SCS.DEVICE_STATE
ABTAG2	实型	ABCONTROLLOGIX	GAOMING_SCS.CNBR2:2:I.CH0DATA
	TIMER	ABCONTROLLOGIX	GAOMING_SCS.CLEAR_IN

图 13-8 成功添加 ABCONTROLLOGIX 位号

4. 如图 13-8 所示, ABCONTROLLOGIX位号的实时数据I/O地址采取"控制器名.位号名.字段名" 的形式,诊断信息I/O地址采取"#控制器名.诊断信息"的形式。

在监控期, 如果出现 InPlant SCADA 和 PLC 系统通信失败的提示, 请检查端口 44818 是否被占用。

14 SNMP驱动

提示:

SNMP 驱动主要用于读取其他支持 SNMP 服务的设备名称、描述、端口等信息,目前该驱动支持的设备有主机、交换机、路由器。

14.1 设备中如何配置SNMP服务

本节以计算机(安装了 Windows7 操作系统)为例,说明如何开启设备的 SNMP 服务,其他设备请查看对应的设备说明书。

- 1. 打开控制面板,当查看方式为类别时,选择【程序/卸载程序】,打开程序和功能界面。
- 2. 在界面左侧单击"打开或关闭Windows功能",打开Windows功能界面,如 图 14-1 所示,勾选 "简单网络管理协议"及其下选项并点击确定。

💽 Tindows 功能	<u> </u>
打开或关闭 Windows 功能	(?)
若要打开一种功能,请选择其复选框。若要关闭一种功能,请清除排 框。填充的框表示仅打开该功能的一部分。	其复选
 ✓ Windows 小工具平台 ✓ XPS Viewer ✓ XPS 服务 团 打印和文件服务 □ 简单 TCPIP 服务(即 echo、daytime 等) 	
□ ☑ 🎍 简单网络管理协议(SIMP) □ ☑ 🍶 WMI SIMP 提供程序	
田 ☑ ↓ 媒体功能 田 □↓ 游戏 ☑ ↓ 远程差分压缩	•
确定	取消

图 14-1 启动 SNMP 服务

3. 等待安装,完毕后,打开如图 14-2 所示的服务界面,选择并双击打开SNMP Service。

鸟 服务					_	
文件 (2) 操作 (4) 查看(V) 帮助(H)					
) 💽 📑 🚺 🖬 🕨 🖬 🕪					
🔍 服务(本地)	🔍 服务(本地)					
					A set of small	
	SNMP Service	名称 🔺	描述	<u> 状态 </u>	白动类型	<u> </u>
		🤐 Shell Hardw	为自动播放硬件事	已启动	自动	2
	停止此服务	🎑 Smart Card	管理此计算机对智		手动	
	<u>重启动</u> 此服务	🎑 Smart Card	允许系统配置为移		手动	1
		🏩 SNMP Service	使简单网络管理协	已启动	自动	
	描述:	🔍 SNMP Trap	接收本地或远程简		手动	
	通辺: 使简单网络管理协议(SIMMP)请求能在	🔍 Software Pr	启用 Windows 和 W		自动唌	. 🖃
	此计算机上被处理。如果此服务停	🔍 SPP Notific	提供软件授权激活		手动	5
	止,计算机将不能处理 SMMP 请求。	🔍 SQL Active	Enables integrati		禁用	F
	如果此服务被禁用,所有明确依赖它	🔍 SQL Server	Provides storage	已启动	自动	
	的服务都将不能启动。		· · ·	= 7.7	-71 [°]	الشر
	\扎붡人标准/					

图 14-2 选择 SNMP 服务

4. 在 SNMP Service 的属性界面中,选择"安全"页签,做如下设置:

4) 单击"添加",打开"SNMP服务配置"界面,如图 14-3 所示,输入社区名称 (如public), 根据需求设置团体权限,点击"添加";

5) 选择"接受来自任何主机的 SNMP 数据包"。

图 14-3 SNMP 服务配置

5. 在SNMP Service的属性界面中,点击"确定"完成配置,并在图 14-2 中重启动该服务。

14.2 配置驱动

添加 SNMP 驱动后,需要按照如下步骤配置 SNMP 驱动。 1. SNMP "驱动设置"界面如 图 14-4 所示。

💵 驱动设置		
文件 (2) 编辑(2)		
🖥 🗸 🕾		
DeviceRoot	设备	
	属性	值
	□ 设备总信息	
	设备总个数	1

图 14-4 驱动配置界面

- 2. 通过以下任意一种方式"添加"设备,添加设备后,界面如图 14-5 所示。
 - 左键单击 ▲ 按钮。
 - 左键单击菜单栏【编辑/添加设备】。

DeviceRoot	设备		
	属	生	值
		设备信息	
		名称	DEVICE1
		设备类型	主机
		描述	
		管理信息库(MIB)	MIB-2
		接受的社区名称	public
		设备IP	
		冗余设备IP	
		周期 (ms)	2000
		超时 (ms)	2000

图 14-5 添加设备

参数说明如表 14-1 所示。

参数名	含义	说明
名称	设备的名称	名称由英文字母、数字、横杠(-)或下划线(_)组成, 最长为64个字节 设备名称不允许重复
设备类型	设备的类型	主机、交换机、路由器可选
描述	设备描述信息	最长为 64 个字节
管理信息库(MIB)	信息库文件名称	系统默认配置,用户无法更改
接受的社区名称	社区的名称	设备SNMP中设置的社区名称,如第14.1章中的第4步, 注意:两个名称中的大小写也需一致
设备 IP	连接设备的 IP	设备的 IP,设备为本机时可填写为 127.0.0.1,必须填写 否则将不能进行其他任何操作
冗余设备 IP	冗余设备的 IP	-
周期 (ms)	诊断设备的时间周期	范围 100~3600000 (ms),默认 2000
超时 (ms)	设置设备诊断超时等待时间	范围 100~3600000 (ms),默认 2000

表 14-1 设备参数说明

3. 设置完成后,通过以下任意方式"保存"驱动配置。

- 单击工具栏 🖬 按钮。
- 单击菜单栏【文件/保存】。

14.3 配置驱动位号的I/O地址

1. 添加SNMP驱动位号后, I/O地址配置界面如 图 14-6 所示。
| IO地址指定
[| | | | | × |
|---|---------------|-----|-------|-----|----|
| 设备: DEVICE1
Community: public | IP地址:
OID: | | • | | 测试 |
| MIB: | | OII | 和值 | | |
| MB
mgmt
sysDescr
sysDescr
sysName
···································· | OID | | Value | | |
| | | | 确认 取消 | ă l | |

图 14-6 设置实时数据(SNMP 驱动)

- 2. I/O 地址可设置为实时数据或诊断信息,设置完成后点击"确认"即可。
 - "实时数据"页签:选择某一设备,IP地址、Community、Oid都将自动获取。在左侧"MIB" 树形目录中,右键单击mib-2下的某一对象,选择"Get"菜单,右侧"OID和值"界面中将出现对应信息。如图2所示,为获取sysDescr数据后的界面。

	 	OID和值
🖃 🗁 system	OID	Value
	sysDescr.0	Hardware: x86 Family 6 Model 58 Stepping 9 AT/AT C

图 14-7 获取对象信息

mib-2下的所有对象的数据类型和说明如下表所示。

表 14-2 mib-2 下的对象

对象	数据类型	说明
sysDescr	Type_string	对硬件,操作系统等实体的说明
sysName	Type_string	计算机全名
ifNumber	Type_int32	网络接口的数量
ifIndex	Type_int32	每一个接口的唯一取值
ifDescr	Type_string	关于接口的信息,包括制造商的名称,产品名称和硬件接口版本
ifSpeed	Type_uint32	接口的当前数据速率容量的估计
ifAdminStatus	Type_int32	理想的接口状态
ifOperStatus	Type_int32	当前操作接口状态

对象	数据类型	说明
ifInOctets	Type_uint32	接口接收的总的字节数
ifOutOctets	Type_uint32	接口传输的字节总数,包括帧字符

选择一个对象后,点击"确认"即可。

● "诊断信息": 如 图 14-8 所示,选择某设备,并指定诊断信息"设备通信状态 (DEVICE_STATE)",点击"确认"即可。设备通信位号状态值意义如表 14-3 所示。

实时数据 诊断信息	
设备指定 设备:	诊断信息指定 设备通信状态 (DEVICE_STATE)
IO地址: #DEVICE1.DEVICE_STA	TE

图 14-8 设置"诊断信息"(SNMP 驱动).

表 14-3 诊断位号状态值

诊断信息	功能	状态:值
	担借其工通知的必断信自	通信断开: 0 (OFF)
以笛迪信扒恣	状态 提供基于通讯的诊断信息	通信正常:1(ON)

15 SUPCON Collector驱动

该驱动用于接入中控数据采集器的数据。与数据采集器的通信方式包含了 UDP(单向通信)和 TCP 两种。配置 UDP 时,需在采集器端添加并配置 UDPDataProvider 服务,详情请参看《中控数据 采集器使用手册》。

15.1 配置驱动

添加 SUPCON Collector 驱动后,需要按照如下步骤配置 SUPCON Collector 驱动。

"SUPCON Collector驱动配置"界面如 图 15-1 所示。可同时添加多个不同通信方式的采集器 信息,UDP和TCP通信的配置方法稍有不同,将在下文中分别作详细描述。

II SUPCOI Collector驱动配置		×
文件 (2) 编辑 (2)		
🖬 🖻 🗙 🅏		
	采集器 位号	
	属性	值
	米集畚个数	

图 15-1 SUPCON Collector 驱动配置界面

15.1.1 TCP通信配置

- 1. 单击驱动配置界面中的 图标,打开如图 15-2 所示界面,并进行以下设置。
 - 定义采集器名称。
 - 通讯方式为 TCP。
 - 设置采集器 IP 地址,若网络冗余,则设置冗余 IP 地址;若采集器冗余则勾取 IP 地址 2 后的复选框并设置对应的 IP 地址。
 - 组态端口不可更改。
 - 数据端口对应采集器"系统设置"中的通信端口号,一般不需要修改。
 - 时间源可设置成本地时间(当前主机的时间)或者数据源时间(所配采集器的时间)。

添加采集器									×
名称:									
通讯方式:	TCP							•	
IP地址1:	127	•	0	•	0	•	1		
冗余IP1:	0	•	0	•	0	•	0		
IP地址2:	127		0		0		1	_ [_
冗余IP2:	0		0		0		0		
组态端口:	19000								
数据端口:	23302								
时间源:	本地	jje]					•	
[确定]	取消	∮		

图 15-2 添加采集器界面

2. 单击"确定",返回配置主界面,在如图 15-3 所示界面中,可再次更改采集器相关参数。

	采集器 位号	1
F	属性	值
	□ 采集器信息	3
	名称	TCPCOLLECTOR1
	通讯方式	TCP
	组态端口	19000
	数据端口	23302
	时间源	本地时间
	□ 物理设备1	
	地址1	127.0.0.1
	地址2	
	□ 物理设备2	
	地址1	
	地址2	

图 15-3 TCP 通信配置界面

 单击"位号"页签,在如图 15-4 界面中,可查阅所配采集器中包含的位号信息,勾选即可将 其导入至本地数据库。

采集器	位号			
可选择	译位号 : 6		已选择位号: 0	
Í	名称	类型	IO地址	
77	在此处输入文字 🛛 🔽 🔽	在此处输入 🍸	在此处输入文字 🛛 🔽	
	421	实型(64位)	TCPCOLLECTOR1@A21	
	432	实型(64位)	TCPCOLLECTOR1@A32	
	433	实型(64位)	TCPCOLLECTOR1@A33	
	4A	整型(64位)	TCPCOLLECTOR1@AA	
	МЕВ	开关望	TCPCOLLECTOR1@MEB	
	CALJIQI_SYSTEM_SERVERCFGIDENTICAL	开关里	TCPCOLLECTOR1@CAIJIQI_SYSTEM_SERVE	
			<u>∽.</u> +. <u>∽.</u> +. ~	1
	【吸血			

图 15-4 位号列表界面

图 15-4 中, CALJIQI_SYSTEM_SERVERCFGIDENTICAL位号为诊断位号,其中"CALJIQI"为 所连的采集器名称。当采集器冗余时,该位号可显示两个互为冗余的采集器组态是否一致,若该值为0,则表示组态不一致;若该值为1,则表示组态一致。

上述界面中的其他功能使用介绍:

提示:

- 单击导入设置:可设置导入位号的前缀以及是否同步位号描述等信息。
- 选择/不选择:当列表中选中多个位号后,可通过单击"选择/不选择"对选中位号进行统一 勾选或取消勾选。
- 4. 导入的位号设置完成后,单击"保存"即可。

15.1.2 UDP通信配置

- 1. 单击驱动配置界面中的 图 图标,打开如图 15-5 所示界面,并进行以下设置。
 - 定义采集器名称。
 - 通讯方式为 UDP。

- 数据端口为数据源采集器 UDPDataProvider 服务配置界面中的端口,上送数据到同一台主机的采集器端口不可重复。
 - 注意: 配置 UDP 通信前,请先在数据源采集器上完成 UDPDataProvider 服务的配置。
- 时间源可设置成本地时间(当前主机的时间)或者数据源时间(所配采集器的时间)。
 注意:当配套 InPlant SCADA 内置数据库使用时,建议将时间源设置为本地时间。

添加采集器								×
名称:								
通讯方式:	UDP							•
IP地址1:	127		0		0		1	_
冗余IP1:	0		0		0		0	_
IP地址2:	127	•	0		0		1	
冗余IP2:	0	•	0	•	0		0	_
组态端口:	19000							_
数据端口:	23302							
时间源:	本地	间]					•
	确定	_]			取消	ļ.	

图 15-5 添加采集器界面

2. 单击"确定",返回配置主界面,在如图 15-6 所示界面中,可再次更改采集器相关参数。

图 15-6 UDP 通信参数配置界面

单击"位号"页签,如图 15-7 所示,单击"手动导入位号",在打开的界面中,选择.vxda文件导入。.vxda文件是从采集器端通过"导出数据库"功能导出的数据库文件。文件打开后,将在位号列表中显示采集器端的位号信息,同样可以通过勾选导入某个位号。此界面的操作可参考TCP通信章节内容。

注意:

导入到 SUPCON Collector 中的.vxda 必须导出自作为数据源的采集器,否则有可能造成数据异常。

采集器	器位号						
可说	选择位号: 0				已选择位号:	0	
Ţ	名称 在此处输入文字	7	<u>类型</u> 在此处输入 了	IO <mark>地址</mark> 在此处输入文字		7	
Ē				ITTOC III) (ACI			
÷	入设置 手动导入位号				不选	择 选择	Ž.

图 15-7 位号界面

4. 位号导入配置完成后,单击"保存"即可。

15.2 配置驱动位号的I/O地址

配置 SUPCON Collector 驱动后,可以手动添加 SUPCON Collector 驱动位号。手动添加位号的方法请详见《数据库管理软件使用手册》或《中控数据采集器软件使用手册》,本小节仅描述如何配置位号的 IO 地址。

1. "IO地址指定"界面如图 15-8 所示。

实时数据				
采 <mark>集站:</mark> TCPCOLLECTOR1	•	采集站位号名:		
位号名:		位号描述:		
			计定	1
				1
				_
ロッチェ・ 名称 A21	<u>类型</u> 实型(64位)	位号描述		_
名称 A21 A32	▲ 类型 实型(64位) 实型(64位)	位号描述		
名称 A21 A32 A33	×型 实型(64位) 实型(64位) 实型(64位) 实型(64位)	位号描述		
名称 A21 A32 A33 AA	类型 实型(64位) 实型(64位) 实型(64位) 整型(64位) 整型(64位)	位号描述		
区与关至• 名称 A21 A32 A33 AA MEB		位号描述		

图 15-8 IO 地址指定

- 在此界面中可指定新添加的位号地址为某采集站的某位号,位号选择步骤如下,完成后点击"确 认"。
 - 1) 在"采集站"的下拉框中选择采集站。

 在位号列表中选中某位号后,"采集站位号名"将自动显示该位号名。当位号列表中位号过 多时,可通过位号名、位号类型或位号描述对位号进行过滤。

3. 完成其他位号属性设置后,点击"确认"结束并返回数据库管理软件主界面,I/O地址显示为"采 集站名.采集站位号名"。

- 目前只有通过 TCP 通信的采集站中的位号能被指定为自定义位号的 IO 地址。
- 通过驱动配置界面导入的位号会显示在采集器的位号列表中。如果修改了位号名,修改后的位 号会被采集器软件识别为新的位号,此时您可以通过驱动配置界面重新导入原位号。新位号与 原位号仅位号名不同,其余属性皆相同。

16 Siemens S7 驱动

提示:

该驱动用于接入西门子 S7 系统的数据。支持的控制器型号包括 S7-200、S7-200 SMART、S7-300、 S7-400、S7-1200 和 S7-1500。完成相应的配置后,驱动可读取以下数据块的数据:

- S7-200 和 S7-200 SMART: 可读取 I 区、Q 区、M 区和 V 区的数据。在组态时,如果是需 要读取 V 区数据,数据块可填写为 DB1。
- S7-300、S7-400、S7-1200 和 S7-1500: 可读取 I 区、Q 区、M 区和 DB 区的数据。

16.1 配置驱动

添加Siemens S7 驱动后, Siemens S7 驱动配置界面如 图 16-1 所示。工具栏三个图标的作用: 点击遥图标,添加设备;点击╳图标,删除设备;点击Ⅰ图标保存组态。

■ Siemens S7 驱动配置 ×			×
文件(F) 编辑(E) 帮助(H)			
) 🖬 🛅 🏯 🗡			
🖃 🍝 Siemens S7	曰 基本信息		
DEFAULT	本地接口数量	0	
	设备数量	0	

图 16-1 驱动配置界面

1. 添加驱动分组

DEFAULT 为默认的设备分组,不能被删除,也不能修改分组名。

- 单击■可以新增分组,单击≯可以删除选中的分组。
- 修改分组名称:选中分组后可以在右侧界面中修改分组名,名称不能为空,可包含字母、 数字、短横杠(-)或下划线(_),不超过64个字符,不能重复。
- 2. 添加并配置设备

选择一个分组后,添加设备后的驱动配置界面如 图 16-2 所示,选中设备后,在右侧界面中配 置设备信息。

⊡ <mark>≦</mark> Siemens S7	Ξ	基本信息	
		名称	Device1
		扫描周期(ms)	1000
		超时(ms)	3000
		重连周期(ms)	5000
		设备启用	是
		CPU插槽号	0
		源地址	3
		本地TSAP(十六进制)	4B. 54
		物理设备1	
		启用	是
		地址1	0.0.0.0:102
		地址2	0.0.0.0:102
		机架号	0
		自定义设备TSAP	否
		设备TSAP(十六进制)	4B.57
	+	物理设备2	

图 16-2 设备信息配置界面

3. 设备参数说明如表 16-1 所示。接入不同型号的S7 系统设备数据时,配置建议请参见表 16-2。

参数名	含义	说明
名称	设备名称	名称由英文字母、数字、下划线(_)或短横杠(-) 组成,最长支持64个字符,名称不允许重复。
扫描周期	驱动采集周期(扫描频率)	单位: ms
超时	驱动超时时间	单位: ms
重连周期	超时后,尝试重连周期	单位: ms
设备启用	是否启用当前设备	是: 启用当前设备; 否: 禁用当前设备
CPU 插槽号	S7 组态中 PLC 设备 CPU 模块的插槽号	根据 S7 中实际配置填写,默认为 0
源地址	与 S7 设备通信的连接资源类型	 默认值为 3, 推荐配置为: 1: PG (编程设备) 2: OP (操作员面板) 3: PC (应用程序)
本地 TSAP (十六进制)	与设备通信的本地客户机 TSAP	根据 S7 组态软件中,配置的服务器连接中"远程属性(客户端)"填写,格式为"xx.xx","xx"的可设置范围为 00~FF,默认为 4D.57
物理设备1		
启用	是否启动物理设备	第一个物理设备默认为"是"且不可设置
地址1	PLC 的网络地址及端口号	例: xxx.xxx.xxx:102, PLC 默认端口 102
地址 2	PLC 的网络冗余地址及端口号	例: xxx.xxx.xxx.xxx:102, PLC 默认端口 102
机架号	S7 组态中 PLC 设备 CPU 模块的机架号	根据 S7 中实际配置填写,范围 0~7
自定义远程 TSAP	是否需要自定义远程 TSAP	通过下拉菜单选择"是"或"否"
远程 TSAP (十六进制)	与设备通信的自定义远程 TSAP	"自定义远程 TSAP"为"是"时可配置。格式为 "xx.xx","xx"的可设置范围为00~FF,默认为4D.57
物理设备 2*	冗余设备信息	-
启用	是否启动物理设备	可以选择是(开启)或否(不开启)

表 16-1 设备参数说明

*物理设备2其他参数与设备1相同,不再赘述。

S7 设备类型	需要配置的驱动参数项	配置建议
所有型号	名称、扫描周期、超时、 重连周期、设备启用、物 理设备的地址1和地址2	公共参数,参见表 16-1
S7-200	本地 TSAP、自定义远程 TSAP、远程 TSAP	 自定义远程 TSAP: 是 TSAP 地址设置,两种模式可选: 使用默认值 4D.57 本地 TSAP: PLC 远程属性 (客户机)的 MicroWin Remote TSAP 远程 TSAP: PLC 本地属性 (客户机)的 MicroWin Local TSAP

表 16-2 接入不同型号的 S7 设备数据的配置建议

S7 设备类型	需要配置的驱动参数项	配置建议
S7-200 SMART	本地 TSAP、自定义远程 TSAP、远程 TSAP	 自定义远程 TSAP: 是 TSAP 地址设置,两种模式可选: ● 设置为 1.01,本驱动和 STEP 7-MicroWIN SMART 编程软件不能同时与 PLC 进行以太网通信 ● 设置为 2.00、2.01、3.00 或 3.01,本驱动和 STEP 7-MicroWIN SMART 编程软件可以同时与 PLC 进行以太网通信
\$7-300 \$7-400	本地 TSAP、自定义远程 TSAP、远程 TSAP	 自定义远程 TSAP: 是 本地 TSAP 和远程 TSAP: 使用默认值 4D.57
S7-1200 S7-1500	本地 TSAP、源地址、CPU 插槽号和机架号	 本地 TSAP:使用默认值 4D.57 自定义远程 TSAP:否 推荐源地址设置为 3 (PC),避免使用 1 (PG)

- 接入 S7-1200 和 S7-1500 数据时,PLC 组态的设置需满足要求:
 1. CPU 保护:设置存取等级为"完全访问权限(无任何保护)";连接机制,勾选"允许来自远程对象的 PUT/GET 通信访问"。
 2. DB 块属性:取消勾选"优化的块访问"。
 TSAP (Transport Service Access Point 传输服务访问点) 抽出的常用值。
- TSAP(Transport Service Access Point,传输服务访问点)地址的常用值:
 S7-200:本地TSAP,默认值1000;远程TSAP,默认值1001。
 S7-300/400/1200/1500:本地TSAP默认值0100,常用值1000、4B54、4B57;远程TSAP默认值0302,常用值1000、4B57。
- 4. 组态完后点击"保存",退出驱动配置界面。

16.2 配置驱动位号的I/O地址

配置 Siemens S7 驱动后,可以手动添加 Siemens S7 驱动位号。手动添加位号的方法请详见《数据库管理软件使用手册》或《中控数据采集器软件使用手册》,本小节仅描述如何配置位号的 IO 地址。

1. 添加一个位号,并设置IO地址, IO地址设置界面如图 16-3 所示。

IO地址添加						\times
设备名:	Device 1	•	数据块:	DB	• 1	
数据类型:	BOOL	•	偏移地址:			
注意: 1、V区对应 2、按位取f	于DB1,V区数据块 直时,偏移地址格式	,请使用DB: 为 "地址.[0.	1 7『,例如:	100.0 🗸 100.	1	
				确认	取消	

图 16-3 IO 地址添加界面

2. 位号添加规则: 位号名和描述根据实际情况添加, I/O 地址添加规则为"设备名. 读/写数据块 名称. 数据类型名称. 偏移地址"。

参数名	含义	说明
设备名	组态中添加的设备名称	下拉框中选择
数据块	数据块分为 I 区、Q 区、DB 区、M 区和 V 区	 DB 区可以在组态中动态添加 DB1、DB2 如果需要使用 V 区数据库,请添加 DB1
偏移地址	读取数据的起始偏移地址	偏移地址根据数据类型长度计算,当数据类型为 BOOL 时, 偏移地址可以根据按位添加,地址格式为"地址.[07]", 例如: 00.1(取偏移 00 字节的第1位值)
数据类型	读取数据的类型	具体类型如表 16-4
读取长度	读取数据时需要连续读取的 字节长度	 数据类型为 STRING 或 DTL 时需要设置: ● STRING:读值时,可设置上限为 220;写值时,可 设置上限为 210 ● DTL:勾选"读取纳秒"时为 12,不勾选时为 8

表 16-3 位号添加规则表

注意: REAL类型占 4 个字节长度,所以再添加下一个位号时,偏移地址从 04 开始。数据类型 所占偏移地址长度如 表 16-4 所示。

表	16-4	数据类型所占偏移地址长度

类型	所占偏移地址长度(单位:字节)
BOOL	1
ВУТЕ	1
CHAR	1
WORD	2
DWORD	4
INT	2
DINT	4

类型	所占偏移地址长度(单位:字节)
REAL	4
LREAL	8
STRING	1 ~ 254
DTL	8或12(如果长度为12,表示包含纳秒)

17 Siemens FetchWrite驱动

通过 FetchWrite 驱动,调用方可实现接入基于 Fetch/Write 通信方式的 PLC 系统。

17.1 配置驱动

添加 Siemens FetchWrite 驱动后,需要按照如下步骤配置 Siemens FetchWrite 驱动。

1. Siemens FetchWrite驱动配置界面如图 17-1 所示。界面中可增加或删除设备、块等操作。

fetchTrite驱动配置 🛛 🔀			
文件 (E) 编辑 (E)			
🖬 ఊ 🖬 🗙			
FetchWrite Driver	属性	值	
	□ 属性		
	设备数	0	

- 图 17-1 FetchWrite 驱动配置界面
- 2. 左键单击选按钮,添加设备后界面如图 17-2 所示。

E FetchWrite Driver	属	性	值
		属性	
		设备名	DEVICEO
		描述	
		设备IP	0.0.0.0
		Fetch端口	2000
		Write端口	2001
		Fetch端口(备用)	0
		Write端口(备用)	0
		超时时间	3000
		最小发包间隔	200

图 17-2 添加设备

注意:

当 VisualField 主、从域服务器冗余时,主、从都需要连接 FetchWrite 设备,因此需要同时配置 Fetch 端口、Write 端口、Fetch 端口(备用)和 Write 端口(备用)。

3. 添加设备后设置相应参数,参数说明如表 17-1 所示。

参数名	含义	说明
设备名	设备的名称	名称由英文字母、数字、横杠(-)、或下划 线(_)组成,最长为64个字节 设备名称不允许重复
描述	设备描述信息	最长为 64 个字节
设备 IP	连接 PLC 设备的 IP	-
Fetch 端口	建立 Fetch 连接的端口号	范围: 1~65535
Write 端口	建立 Write 连接的端口号	范围: 1~65535
Fetch 端口(备用)	建立 Fetch 连接的端口号	有冗余域服务器时需要配置,范围:1~65535
Write 端口(备用)	建立 Write 连接的端口号	有冗余域服务器时需要配置,范围:1~65535
超时时间	向设备发送命令后,等待命令响应回包 的最大时间	0~999999ms
最小发包间隔	向 PLC 设备发送命令后,两个命令间最 小的时间间隔	0~9999999ms

表 17-1 设备参数说明

4. 选中一个设备, 左键单击 🖬 按钮, 添加一个数据块后, 界面如 图 17-3 所示。

E FetchWrite Driver	属性 □ 属性	值
BLOCK0	数据块名	BLOCKO
	描述	
	数据类型	main memory
	DB号	1
	起始地址	0
	地址长度	1
	轮间周期	1000

图 17-3 添加数据块

注意:

地址长度不能超过下位机数据块实际长度,否则会造成通信失败。

5. 添加数据块后设置相应参数,参数说明如表 17-2 所示。

参数名	含义	说明
数据块名	数据块的名称	名称由英文字母、数字、横杠(-)、或下划线(_) 组成,最长为64个字节 同一个设备下的数据块名称不允许重复 一个设备下允许有若干个 Block
描述	数据块描述信息	最长为 64 个字节
数据类型	读取 PLC 中的数据	目前只开放 DB 中的数据
DB 号	被采集数据所属 DB 的 ID	范围: 1~255
起始地址	从 PLC 中的该地址开始读取数据	范围: 0~2047
地址长度	读取的数据长度	以 WORD 为单位,范围: 1~2048
轮询周期	数据轮询发包的间隔	范围: 0~99999999ms

表 17-2 数据块参数说明

6. 组态完设备和块后点击 🖫 保存。

17.2 转换位号清单列表

位号清单转换功能可将符合规定格式的.csv 位号列表清单转化为 VisualField 数据库可识别的清单。转换操作步骤如下:

1. 在驱动配置界面中,点击菜单栏【编辑/转换位号清单列表】,出现如图 17-4 所示界面。

位号清单转换		×
导入文件:		
导出文件:		
	确定	取消

图 17-4 位号清单转换界面

- 2. 单击"导入文件"后的_____按钮,选择需要转换的.csv文件,文件格式必须如图 17-5 所示。 要求如下:
 - 地址:数据块名与地址偏移说明之间必须使用英文标点符号",",如:DB91,DBW0, DB91,DBD0等。
 - 类型: 若位号类型是 BOOL,则允许地址中带".",表示第几位 bit,如: DB91,DBX0.1。

	A	В	С	D	Ε
1	符号名	类型	地址	描述	设备名
2					
3					
4					
5					
6					
7					
8					

图 17-5 被转换的.csv 文档格式

- 3. 单击"导出文件"后的_____按钮,选择转换后的.csv 文件,可自定义文件名,单击"确定", 提示转换成功即可。
- 4. 转换后的文件可通过数据库管理软件(VFVarCfg)中的"导入"功能,将位号导入到 InPlant SCADA 数据库中。

17.3 配置驱动位号的I/O地址

配置 FetchWrite 驱动后,可以手动添加 FetchWrite 驱动位号。手动添加位号的方法请详见《数据库管理软件使用手册》或《中控数据采集器软件使用手册》,本小节仅描述如何配置位号的 IO 地址。

1. 添加一个该驱动的位号, IO地址配置界面如 图 17-6 所示。

10地址选择		×
实时数据 诊断信息		
快选择	信息	
设备: DEVICE0 🔽	DB号: 1	输入类型: main_memory
	起始地址: 0	地址长度: 1
块: BLOCK0 🔽	块内偏移: 0	数据类型: WORD ▼ □ ▼
		通认 取消

图 17-6 IO 地址选择界面

- 2. IO 地址可设置为实时数据或诊断信息,设置完成后点击"确认"。
 - "实时数据"页签,选择在监控中获取实时数据的设备和块,输入块内偏移地址(块内偏 移地址不能大于 1000000)和数据类型。
 - 选择"诊断信息"页签,选择在监控中获取诊断信息的设备,点击确定保存。如表 17-3 所示。

表 17-3 诊断位号状态值

诊断信息	功能	状态:值
设备断线次数	统计设备的断线次数	累加值(整数)

- 3. 完成位号属性设置后,单击"确定",返回数据库管理软件主界面。位号的 I/O 地址格式为:
 - 实时数据位号的地址有两种格式
 - ▶ 当位号的数据类型为 BIT 时,地址格式为"设备号.块号.块偏移.BIT.数据位数",如 "DEVICE0.BLOCK0.0.BIT.0"。
 - ▶ 当位号的数据类型为其他类型时,地址格式为"设备号.块号.块偏移.数据类型",如 "DEVICE0.BLOCK0.0.WORD"。
 - 诊断信息位号地址格式为 "#设备号.诊断信息类型", 如 "# DEVICE0.OFFLINE_TIME"。

18 ModbusTCPSlave驱动

ModbusTCPSlave 驱动使本系统可被 Modbus TCP Master 端连接,以驱动的方式运行于 InPlant SCADA 软件和采集器软件。支持至少 20 个 Modbus Master 的接入请求数据。

18.1 配置驱动

 驱动配置界面如下图所示,可通过菜单栏或工具栏实现:保存、添加数据块、添加设备,删除 数据块或设备等操作。

■∎odbus TCP Slave 驱动配置			×
文件 (E) 编辑 (E)			
🔲 👂 📇 🗡			
📮 DataBlock1	Ξ	基本信息	
	Ż	数据块数量	1
		内存块数里	0
		本地接口	
		监听端口	502

图 18-1 驱动配置界面

2. 添加一个数据块,选中这个数据块后,右侧界面如下图所示。可更改名称、数据位规则和设备 ID 等。

■odbus TCP Slave 驱动配置		×
文件 (E) 编辑 (E)		
🔲 👂 📇 🗡		
🖃 📮 DataBlocki	基本信息	
Blocki	名称	Block1
	数据位规则	BIG
	物理设备	
	设备ID	1

图 18-2 数据块配置界面

3. 设置完成后,单击"保存"。

18.2 配置驱动位号的I/O地址

配置 ModbusTCPSIave 驱动后,可以手动添加 ModbusTCPSIave 驱动位号。手动添加位号的方法 请详见《数据库管理软件使用手册》或《中控数据采集器软件使用手册》,本小节仅描述如何配置位 号的 IO 地址。

1. 添加一个该驱动的位号, IO 地址配置界面如下图所示。

10地址添加		×
设备名:	Block1	偏移地址:
寄存器类型:	_	数据类型: WORD ▼
		确定取消

图 18-3 IO 地址添加界面

2. 位号添加规则。

位号名和描述根据实际情况添加, I/O 地址添加规则为"读/写数据块名称 . 数据类型名称 . 偏移地址"。

参数名	含义	说明
设备名	组态中添加的设备 ID	在下拉框中选择
偏移地址	读取数据的起始偏移地址	偏移地址根据数据类型长度计算,范围为 0-65534。
寄存器类型	Coils/holdingregister	-
数据类型	读取数据的类型	具体类型如表 18-2

表 18-1 位号添加规则表

注意: REAL类型占 4 个字节长度,所以再添加下一个位号时,偏移地址从 04 开始。数据类型 所占偏移地址长度如 表 18-2 所示。

类型	所占偏移地址长度(单位:字节)
BOOL	1
BYTE	1
CHAR	1
WORD	2
DWORD	4
INT	2
DINT	4
REAL	4
LREAL	8

表 18-2 数据类型所占偏移地址长度

19 DNP3 驱动

通过 DNP3 驱动,调用方作为主站,可以获取支持 DNP3 协议的从站数据。

19.1 配置驱动

添加 DNP3 驱动后,可以通过以下步骤配置 DNP3 驱动。

1. "DNP3 驱动配置界面"如下图所示。

DNP3 驱动配置			×
文件(F) 编辑(E)			
	·		
DNP3	□ 设备 ┃		1
	属性		
	日月時	TUTC	
	3区4月4百分5	SIPCON	
	初四月月日	DOLOGY	

图 19-1 DNP3 驱动配置界面

2. 左键单击 建按钮或者单击菜单栏【编辑/添加设备】,添加设备如下图所示。

DIP3 驱动配置			X
文件(F) 编辑(E)			
	设备		
	属性	值	
		DeviceO	
	描述		
	本地DNP3地址	1	
	扫描周期(ms)	3000	
	超时时间(ms)	1000	
	重连周期(s)	15	
	断线续传	禁用	
	□ 主设备		
	DNP3地址	2	
	IP1		
	端口1	20000	
	IP2		
	端口2	20000	
	田 冗余设备		
1			
1			

图 19-2 设备参数配置

3. 添加设备后,在属性界面中设置相应参数,参数说明如下表所示。

表 19-1 设备参数说明

参数名	含义	说明
名称	设备名称	 名称由英文字母、数字、-、_组成,最长为64个字节 同一个驱动下的设备名称不允许重复 一个驱动下最多可挂16个设备
描述	设备描述信息	最长为 256 个字符
本地 DNP3 地址	本地 DNP3 地址	取值范围 1-65535,不能重复
扫描周期(ms)	读取数据的周期	 在一个扫描周期内,采集器会采集实时数据并进行比较, 如果有值发生变化,则上送数据 单位:毫秒。范围: 1000-3600000
超时时间 (ms)	驱动超时时间	默认 1000 毫秒。单位为毫秒,范围 200-60000
重连周期(s)	设备断开后再次发起连 接的时间间隔	默认 15 秒。单位为秒,范围 0-3600
断线续传	断线续传是否启用	选择启用或禁用 (注:如果启用,在 InPlant SCADA 内置数据库模式下,需 要在配置文件 SCRTCoreCfg.ini 中将"RETRANSFER="后的 数值改为1,文件默认路径为InPlant SCADA 软件的安装路径)
主设备		
DNP3 地址	主设备的 DNP3 协议地 址	范围 1-65535,不能和本地 DNP3 地址重复
IP1	主设备 IP 地址	-

参数名	含义	说明
端口1	主设备端口号	范围 1-65535
IP2	主设备网络冗余 IP 地址	-
端口 2	主设备网络冗余端口号	范围 1-65535
冗余设备*		
启用	是否启用冗余设备	可以选择:是(开启)、否(不开启)

*冗余设备的其他参数与主设备相同,不再赘述。

4. 组态完设备配置后,点击 ₩ 保存。

19.2 配置驱动位号的I/O地址

配置 DNP3 驱动后,可以手动添加 DNP3 位号。手动添加位号的方法请详见《数据库管理软件 使用手册》或《中控数据采集器软件使用手册》,本小节仅描述如何配置位号的 IO 地址。

1. DNP3 驱动位号的"IO 地址指定"界面如下图所示。

10地址指定						×
设	备:	Device0	•	IO类型:	AO	•
类	型:	BOOL	•	IO索引:	0	(0~65535)
		确认		4	则消	

图 19-3 IO 地址设置(DNP3 驱动)

- 2. 根据实际情况选择设备名、数据类型和 I/O 位号类型,并填写 I/O 位号索引。数据类型、I/O 位 号类型和 I/O 索引应该与 GCS 系统中对应的位号信息一致。
- 3. 位号属性完成后,单击"确定",返回至如下图所示的软件主界面。

位号名	类型	描述	I/O3区运力	I/0地址
在此处 §	7 在此 7	在此处输 🍸	在此 🍸	在此处输入文字 🛛 🍸
A001	实型	DNP3驱动位号	DNP3	DeviceO. BOOL. AI1

图 19-4 成功添加 DNP3 位号

如上图所示, I/O 地址添加规则为"设备名.数据类型名.IO 类型名+IO 索引"。

20 Modbus RTU Plus驱动

通过 Modbus RTU Plus 驱动,调用方可以通过 TCP/IP 链路来传输 Modbus RTU 协议的数据。

20.1 配置驱动

添加 Modbus RTU Plus 驱动后,可以通过以下步骤配置 Modbus RTU Plus 驱动。

1. "Modbus RTU Plus 驱动配置界面"如下图所示。

■odbus RTV Plus驱动配置				
日 📇 🗡				
Modbus RTU Plus		驱动		
		名称	Modbus RTU Plus	
		描述	SUPCON	
		基本信息		
		本地接口数里	0	
		设备数里	0	

图 20-1 Modbus RTU Plus 驱动配置界面

2. 左键单击选按钮,添加设备如下图所示。

🖃 🍰 Modbus RTU Plus	基本信息		
	名称	Device1	
	扫描周期(ms)	1000	
	超时 (ms)	10000	
	重连周期(ms)	5000	
	数据位规则	bit0_15	
	设备号	1	
	主设备		
	启用	是	
	主IP∶端口号	0.0.0:0	
	冗余IP:端口号	0.0.0:0	
	冗余设备		
	启用	否	
	主IP∶端口号	0.0.0:0	
	冗余IP:端口号	0.0.0:0	

图 20-2 设备参数配置

3. 添加设备后,在属性界面中设置相应参数,参数说明如下表所示。

参数名	含义	说明
名称	设备名称	名称由英文字母、数字、_组成,最长 32 字符,名称不 允许重复
扫描周期	读取数据的周期	单位: 毫秒, 范围 1-84600000
超时	主站发送命令后至命令响 应之间的最长等待时间	单位: 毫秒, 范围 1-84600000
重连周期	与从站连接失败后至下一 次重连的时间	单位: 毫秒, 范围 1-84600000
数据位规则	-	 bit0_15: 大端模式(低位在前) bit15_0: 小端模式(高位在前)
设备号	设备 ID	范围 1-247
主设备		
启用	是否启用物理设备	主设备默认为"是"且不可设置
主 IP: 端口号	主设备地址	格式为"IP地址:端口号",端口号范围为: 1~65535
冗余 IP: 端口号	主设备网络冗余地址	格式为"IP地址:端口号",端口号范围为: 1~65535
冗余设备*		
启用	是否启动冗余设备	可以选择:是(开启)、否(不开启)

表 20-1 设备参数说明

*冗余设备的其他参数与主设备相同,不再赘述。

20.2 配置驱动位号的I/O地址

配置 Modbus RTU Plus 驱动后,可以手动添加 Modbus RTU Plus 位号。手动添加位号的方法请 详见《数据库管理软件使用手册》或《中控数据采集器软件使用手册》,本小节仅描述如何配置位号 的 IO 地址。

1. Modbus RTU Plus 驱动位号的"IO 地址指定"界面如下图所示。

10地址添加		2	<
设备名:	Device1	起始地址:	
寄存器类型:	Coil	数据类型: BIT ▼	
	确认		

图 20-3 IO 地址设置(Modbus RTU Plus 驱动)

- 2. 根据以下说明,配置 I/O 地址的参数:
 - 设备名:在下拉框中选择设备名称。
 - 寄存器类型:在下拉框中选择寄存器类型,可选项包括 Coil(线圈)、DiscreteInputs(离散 量输入)、HoldingRegister(保持寄存器)、Input Register(输入寄存器)。
 - 起始地址:位号的起始地址,在文本框中输入,范围为0-65534。下位机的起始地址=位号 起始地址+1。
 - 数据类型:在下拉菜单选择,参数说明参见表 20-2。
- 3. 位号属性完成后,单击"确定",返回至如下图所示的软件主界面。

位号名	类型	描述	I/O322力	I/0地址
在此处了	在… 🍸	在了	在此处输入文字 🍸	在此处输入文字 🔽 🔽
C1	实型		Modbus RTV Plus	Device1.Coil.O.BIT
C2	实型		Modbus RTV Plus	Device1.Coil.5.BOOL
D1	实型		Modbus RTV Plus	Device1. DiscreteInputs. O. BIT
D2	实型		Modbus RTV Plus	Device1. DiscreteInputs. 2. BIT
H1	实型		Modbus RTV Plus	Device1. HoldingRegisters. O. SHORT
H2	实型		Modbus RTV Plus	Device1.HoldingRegisters.1.WORD
I1	实型		Modbus RTU Plus	Device1. InputRegisters. 2. SHORT
I2	实型		Modbus RTU Plus	Device1. InputRegisters. 2. FLOAT

图 20-4 成功添加 Modbus RTU Plus 位号

I/O 地址添加规则为"设备名.寄存器类型名.起始地址.数据类型"。例如,保持寄存器、起始地 址为 0、数据类型为 SHORT,则对应的下位机地址为 40001。

20.3 参数说明

Modbus RTU Plus 位号类型的详细描述如下表所示。

数据类型	数据描述	数据位	寄存器类型
Bit	布尔类型	1 bit	Coil(线圈)
BOOL			DiscreteInputs(离散量输入)
SHORT		2 字节	
INT	有符号整形	4 字节	
LINT		8 字节	
WORD		2 字节	HoldingRegister(保持寄存器)
DWORD	无符号整形	4 字节	Input Register(输入寄存器)
LWORD		8 字节	
FLOAT	浮占型	4 字节	
DOUBLE		8 字节	

表 20-2 位号类型详细描述表

21 MELSEC驱动

通过 MELSEC 驱动,调用方可接入支持三菱 MELSEC 通信协议的 PLC 系统,读取和修改设备数据。

21.1 配置驱动

1. 驱动配置界面如下图所示。

MELSEC		×
🖬 📇 🗡		
MELSEC	□ 基本信息	
	本地接口数里	0
	设备数量	0

- 图 21-1 驱动配置界面
- 2. 左键单击选按钮,添加设备如下图所示。

MELSEC			
🛛 🖬 🛛 👗			
🖃 📥 MELSEC		基本信息	
B. Device1		名称	Device1
		扫描周期(ms)	1000
		超时(ms)	10000
		重连周期(ms)	5000
		协议类型	QnA=3E
		物理设备1	
		启用	是
		地址1	0.0.0.0:4002
		地址2	0.0.0.0:4002
	Ð	物理设备2	

图 21-2 数据块配置界面

3. 添加设备后,在属性界面中设置相应参数,参数说明如下表所示。

参数名	含义	说明
名称	设备名称	名称由英文字母、数字、_组成,最长 32 字符,名称不允许重复
扫描周期	读取数据的周期	单位: 毫秒,范围 100-2147483647,默认为 1000

参数名	含义	说明
超时	驱动超时时间	单位: 毫秒, 范围 100-2147483647, 默认为 10000
重连周期	超时后, 尝试重连周期	单位: 毫秒,范围 100-2147483647,默认为 5000
协议类型	通信协议的类型	支持两种协议类型: QnA-3E 和 A-1E。默认使用 QnA-3E
物理设备1		
启用	是否启用物理设备	主设备默认为"是"且不可设置
地址 1	设备地址	格式为"IP地址:端口号",端口号范围为: 1~65535 端口号需与三菱 PLC 系统中设置的通讯端口号保持一致
地址 2	设备网络冗余地址	格式为"IP地址:端口号",端口号范围为: 1~65535 端口号需与三菱 PLC 系统中设置的通讯端口号保持一致
物理设备 2*		
启用	是否启动冗余设备	可以选择:是(开启)、否(不开启)

*物理设备2的参数与物理设备1相同,不再赘述。

4. 组态完设备配置后,点击 🖬 保存。

21.2 配置驱动位号的I/O地址

配置 MELSEC 驱动后,可以手动添加 MELSEC 位号。手动添加位号的方法请详见《数据库管理软件使用手册》或《中控数据采集器软件使用手册》,本小节仅描述如何配置位号的 IO 地址。

1. MELSEC 驱动位号的"IO 地址指定"界面如下图所示。

10地址添加			Х
设备ID:	Device1	教据类型: BYTE ▼	
☆ 软元件:	X •	起始地址:	
读取长度:		□ 按位读写 数据位:	
	确认	取消	

图 21-3 IO 地址设置(MELSEC 驱动)

- 2. 根据以下说明,配置 I/O 地址的参数:
 - 设备名:在下拉框中选择设备名称。
 - 软元件:在下拉框中选择软元件类型。
 - 起始地址:软元件中的起始地址,在文本框中输入,范围为0-65534。
 - 数据类型:在下拉菜单选择,参数说明参见表 21-2。
 - 读取长度: 当数据类型为 STRING 类型, 需要输入长度。
 - 按位读取:数据类型为 BYTE、CHAR 时,可勾选此项,并输入数据位(0-7)。数据位为 WORD 时,可勾选此项,并输入数据位(0-15)。

3. 位号属性完成后,单击"确定",返回至如下图所示的软件主界面。

位号名	1/0驱动		类型		I/O地址		
在此处输入 7		在此	Y	在	Y	在此处输入文字	Y
MELTAG001	MELSE	С	开关量		Device1.X.BYTE.	1.1	

图 21-4 成功添加 MELSEC 位号

如上图所示, I/O 地址添加规则为"设备名.软元件类型名.数据类型.起始地址"。

21.3 参数说明

除了 CHAR 和 STRING, MELSEC 位号类型的详细描述如下表所示。

类型	描述	数据位	取值范围	所占起始地址长度(单位:字节)
BOOL	布尔型	1	0~1	1
CHAR	字符	8	-128~127	1
BYTE	1字节	8	0~0xFF	1
WORD	2 字节	16	0~0xFFFF	2
DWORD	4 字节	32	$0\sim$ 0xFFFF FFFF	4
INT	整型	32	$-2^{32} \sim 2^{32} - 1$	2
DINT	双整型	64	$-2^{64} \sim 2^{64} - 1$	4
REAL	单精度浮点型	32	-3.40E+38 ~ 3.40E+38	4
LREAL	双精度浮点型	64	-1.79E+ 308 ~ 1.79E+308	8

表 21-2 位号类型详细描述表

22 TCS-500 驱动

提示:

安装 ContrixPlus 组件包(TCS-500Patch)后,才可配置 TCS-500 驱动。通过 TCS-500 驱动,调用方可以实现 TCS-500 系统的接入。

• TCS-500 驱动需要单独的授权。有授权时可以添加驱动,无授权时不能添加驱动。

● 目前,TCS-500 驱动仅可在中文环境下使用。

22.1 配置驱动

添加 TCS-500 驱动后,需要按照如下步骤配置 TCS-500 驱动。

1. "TCS驱动配置"界面如图 10-1 所示。

TCS-500 驱动配置				_	×
文件(F) 编辑(E)					
🛛 🖬 🗟 🎓 😫 🗡					
√ <u>TCS</u> ‡	空制	站 位号			
	属	性	值		
	Ξ	控制站总体信息			
		控制站个数	0		
					_

图 22-1 TCS 驱动配置界面

- 2. 单击"载入"按钮 1,打开"选择控制站组态"对话框。
- 3. 单击"选择组态工程"按钮,选择一个.cxPrj文件打开,载入后显示所选工程的所有控制站,如 图 22-2 所示。

选择控制	站组态			×
常规 选择 选择	│ 译组态工程 D:\C 取的控制站:	:onfiguration\ContrixPlus_[Data\day1-9-1\day1-9-1.cxPrj	
	名称	描述	目录	
	wqq		D:\Configuration\ContrixPlus_Data\day1-9-1\CS1	
	1		D:\Configuration\ContrixPlus_Data\day1-9-1\CS2	
	选 全不选		确定 取消 应用	

 勾选需要的控制站,单击"确定",控制站的组态信息会被载入到驱动中。导入时,若检测到位 号重名,则将弹出如下图所示的"重名位号修改"对话框,并可进行以下操作。

图 22-2 选择控制站组态

- 单击"修改添加前缀"按钮,在弹出的对话框中设置每个控制站的前缀。自定义前缀必须 以数字或者字母开头,允许使用英文字母、数字、"-"或"_",不超过 128 个字符。
 单击"确定"后返回"重名位号修改"对话框,修改后的位号名称默认为"前缀_位号名"。
- 双击"修改后的位号名称"列的单元格,可以直接修改位号名。

■ 重名	■ 重名位号修改							
序号	位号名称	所属控制站	修改后的位号名称					
1	INT523333333333333333333333333333333	TS0.2	T502_INT523					
2	INT52333333333333333333333333333333	TS0.4	T504_INT523					
, 	at accard		-					
添加修	<u> </u>							

图 22-3 "重名位号修改"对话框

5. 载入控制站组态后,驱动配置界面如下图所示。

B-	控制	站 位号		
₩ TS0.4	属	<u>生</u>	值	
		控制站配置		
		控制站名	TS0. 2	
		描述		
		工程	day1-9-1	
		IP地址	A:172.20.0.2 B:172.21.0.2	
		组态路径	D:\Configuration\ContrixPlus_Data\day1-9-1\CS1	
		位号前缀		
		位号名大小写转换	不转换	

图 22-4 控制站属性

6. 在"控制站"页签下对控制站基本属性进行设置。

参数名	含义	说明
控制站名	TCS-500 控制站名称 默认的控制站名为 TS+ IP 地址后 2 位,如 TS0.2	 字符串形式,长度范围为1~128 只能包含数字、英文字母、"_""-"和"." 在一个工程内控制站名不可重复
描述	控制站的描述内容	不可编辑
工程	TCS-500 组态的工程名	不可编辑
IP 地址	与主干网直连的控制站 IP 地址	不可编辑
组态路径	TCS-500 组态文件所在的目录	不可编辑
位号前缀	用来区分控制站里面重复的位号名	 统一加在该控制站所属的位号名前的特殊标记,用于避免重名或区分位号。刷新组态时请保留位号的前缀,以免位号冲突 若同时添加多个组态,后添加到组态位号和已经添加到组态位号有重名,则会自动添加位号前缀 保存后不能二次编辑
位号名大小写转换	用于设置是否自动转换位号名的大 小写	从下拉菜单选择"不转换"、"大写"或"小写", 保存后不能二次编辑

表 22-1 属性设置说明

- 7. 在"位号"页签下选择需要导入的位号。在此位号列表界面中,可进行以下操作。
 - 位号列表第一列用来选择 TCS-500 驱动位号。位号支持单选和多选,单击用来单选位号、 使用 Shift 键或 Ctrl 键并单击来多选位号。
 - 单击界面右下角的"全选"按钮,会选中当前页面的所有位号,单击"全不选"按钮则清空已选择的所有位号。
 - 点击列的标题实现位号的排序,按字母顺序排序,点一次是升序,再点一次是降序。
 - 单击"更新",更新属性界面和位号列表界面。
 - 位号支持按位号被选的状态、"名称"、"数据类型"、"描述"、"IO 地址"和"属性"过滤。 除被选的状态外,其他都可通过在过滤条件中输入关键字后,按回车键或单击☑进行过滤。
 - 位号被选的状态过滤方法如下:
 单击状态列上方的 图标,弹出状态过滤对话框,如下图所示。过滤条件共有三种:
 "已选择"、"未选择"和"已选择 OR 未选择"(同时勾选"已选择"和"未选择")。
 选择其一后单击"确认"即可。

控制站 位号			
已选择位号: 214(214)			
名称		数据类型	描述
🔽 在此处输入文字	7	在此处输入文字 🛛 🍸	在此处输
TS8_2_AI_1_5_1		REAL	
TS0_2_A1_1_5_1_ALARM		BYTE	AI_1_5_1
✓ TS0_2_AI_1_5_1_LF		BYTE	AI_1_5_1
TS0_2_AI_1_5_1_QL1_44	****		~
TS0_2_AI_1_5_1_RAV	Set a 16	l.	^
T50_2_AI_1_5_2	北虎冬石	ж.	
TS0_2_AI_1_5_2_ALA ^	236761	+• J	
T50_2_AI_1_5_2_LF	ΠP	选择	
TS0_2_AI_1_5_2_QL1	<u> </u>	221+	
TS0_2_AI_1_5_2_RAV	日未	选择	
✓ TS0_2_AI_1_5_3			
TS0_2_AI_1_5_3_ALA		确认 取消	

图 22-5 状态过滤设置对话框

▶ 数据类型也可通过以下方式过滤。

单击数据类型条件下的**又**图标,弹出数据类型过滤对话框。如下图所示。在下拉框中可以选择各种数据类型格式进行过滤,如 "BOOL"、"REAL"、"INT"等等。

控制站 位号				
已选择位号: 214 (214)				
名称	数据类型		描述	
▼ 在此处输入文字 ▼	在此处输入文字	7	在此处输入文字	7
▼ T50_2_AI_1_5_1	REAL			~
T50_2_AI_1_5_1_ALARM	BYTE	如用美型过速		×
▼ T50_2_AI_1_5_1_LF	BYTE	*5+=++=+		
▼ T50_2_AI_1_5_1_QLT	BOOL	剱婿尖望:	•	
T50_2_AI_1_5_1_RAW	INT			
▼ T50_2_AI_1_5_2	REAL			
▼ T50_2_AI_1_5_2_ALARM	BYTE			
▼ T50_2_AI_1_5_2_LF	BYTE	确定	取消	
▼ T50_2_AI_1_5_2_QLT	BOOL			

图 22-6 数据类型过滤设置对话框

注意:

由于各软件的位号命名机制的不同,以下形式的位号将无法正确导入到 InPlant SCADA 中,请调整位号名并手动逐个添加。

- 位号名以下划线开头的位号。
- 位号名长度超过 242 个字符的位号。
- 8. 设置完成后,单击保存按钮,完成TCS-500驱动配置。

22.2 配置驱动位号的I/O地址

配置 TCS-500 驱动后,可以手动添加 TCS-500 位号。手动添加位号的方法请详见《数据库管理 软件使用手册》或《中控数据采集器软件使用手册》,本小节仅描述如何配置位号的 IO 地址。

1. "IO 地址选择"界面如下图所示。

IO地址选择		\times
实时数据 设备诊断		
选择控制器: T50.2	•	
位号名	位号类型 ^	
LREAL	INT	
LREALO	INT	
LREAL1	INT	
NTAG1	BOOL	
NTAG10	REAL	
NTAG11	REAL	
NTAG12	REAL	
NTAG13	REAL	
NTAG1_0	BOOL	
NTAG2	INT	
NTAG2_0	BOOL	
NTAG3	BOOL	
NTAG4	BOOL	
NTAG5	BOOL	
3	2001	
1 -		_
IO地址: TS0.2@LREAL		
	确认 取消	í

图 22-7 IO 地址选择对话框(TCS-500 驱动位号)

2. IO 地址可设置为实时数据或者诊断信息。在载入组态文件时,会同步载入 AI 模块位号和诊断 位号的报警配置。

实时数据: 在"实时数据"页签中选择控制器后,界面列出属于该控制器的位号,用户选中一个位号后,单击"确定",即可设置完 IO 地址并返回到位号配置窗口。

- 诊断信息: 在"设备诊断"页签中选择诊断的信息,可以配置该位号为指定控制站模块的 诊断信息位号。诊断位号状态值请参见 TCS-500 系统软件资料《TCS-500 Patch 使用手册》。
- 3. 位号属性设置完成后,单击"确定",返回软件的主界面。

位号名		1/03図	动	类型	I/O地址	
在此处…	Y	在	Y	在了	在此处输入文字	Y
Al_1_6_1		TCS-5	00	实型	TS0.2@AI_1_6_1	
DiagTag		TCS-5	00	实型	TS0.2@SYS_STATUS_000_0	02

图 22-8 成功添加 TCS-500 位号

如 图 10-4 所示, TCS-500 位号实时数据I/O地址采用"控制站名@位号名"的形式,诊断信息 I/O地址采用"控制站名@诊断位号名"的形式。

23 OPC UA驱动

OPC UA 作为一项面向工业过程控制的数据交互软件技术,提供了一种在数据源与客户端之间 进行实时数据传输的通讯机制,可以轻松地实现异构系统的互联。目前支持的数据类型包括 BOOL、 UINT16、UINT32、UINT64、INT16、INT32、INT64、FLOAT、DOUBLE 和 STRING,其余类型的 数据会被转换为 STRING 数据。

通过 OPC UA 驱动,可以获取 OPC UA 服务器的数据。

23.1 配置驱动

添加 OPC UA 驱动后,可以通过以下步骤配置 OPC UA 驱动。

1. "OPC UA驱动配置"如图 23-1 所示。

OPC UA配置			×
文件(F) 编辑(E)			
🖬 🖻 🗙 🖉 🖉			
OPC UA	服务器 位号		
	属性	值	
	□ 服务器总体信息		
	服务器个数	0	
*数据类型为NULL的位号不	会被添加	位号重	命名

图 23-1 OPC UA 驱动配置对话框

2. 左键单击 💽 或者单击菜单栏【编辑/添加服务器】, 弹出如 图 23-2 所示的"选择OPC UA服务器" 对话框。

OPC UA配置	\times
服务器名:	
OPCUA	
服务器地址:	
opc.tcp://192.168.18.24:18399	
登录方式:	
匿名 ▼	
账户:	
密码:	
确定	

图 23-2 OPC UA 服务器选择对话框

- 3. 填写服务器名称、服务器地址,选择认证方式并按要求输入服务器账户和密码。
 - 服务器名:名称必须以字母或数字开头,可由英文字母、数字、短横杠(-)、下划线(_)
 组成,最长 200 个字节,名称不能重复。
 - 服务器地址:格式为 "opc.tcp://IP:port/" 或 "IP:port", OPC UA 服务器的地址和端口。
 - 登录方式:可选择"匿名"或"用户",请选择 OPC UA 服务器支持的登录方式。如果选择 "用户",需要在下方输入账户和密码。
- 4. 单击"确定",返回到如图 23-3 所示"OPC UA驱动配置"界面,设置其他项。
 - 服务器过滤项:请根据服务器能力选择 DECODED (过滤)或 ENCODED_NOBODY (无 过滤)。
 - 地址空间遍历配置:驱动默认获取所有数据,此处可以配置是否只获取指定节点数据。
 - ▶ 地址空间遍历类型:选择 BrowseAll,驱动会遍历服务端的所有节点;选择 BrowseOneLay,需要配置节点ID,驱动仅获取指定节点数据。
 - ➤ 需要遍历的节点: 遍历类型为 BrowseOneLay 时需要设置节点 ID, 即位号的唯一标识。 以 InPlant SCADA OPC UA 服务节点的数据为例, 节点 ID 是位号名。

图 23-3 添加 OPC 驱动后的 OPC 服务器选择对话框

- 5. 在"位号"页签下选择需要导入的位号。"位号"页签下可对位号进行过滤,过滤使用方法具体 见位号过滤章节内容。
- 选择位号后,会弹出"位号重命名"页面,如下图所示,可以设置导入后显示的位号名。
 位号名规则:必须以字母或数字开头,支持英文字母、数字、短横杠(-)、下划线(_),不超过 200 个字节,位号名不能重复。

亿	位号重命名						
	原位号名	修改后位号名	IO地址	^			
	ROOT111 DEVICETOPOLOGY	TAG1	22.4.Numeric.6095				
	ROOT111_DISP_REALDATA_B	TAG2	22.1.Numeric.1000				
	ROOT111_DISP_REALDATA_B	TAG3	22.1.Numeric.1001				
	ROOT111_DISP_REALDATA_B	TAG4	22.1.Numeric.1002				
	ROOT111_DISP_REALDATA_B	TAG5	22.1.Numeric.1003				
	ROOT111_DISP_REALDATA_B	TAG6	22.1.Numeric.1004				
	ROOT111_DISP_REALDATA_B	TAG7	22.1.Numeric.1005				
	ROOT111_DISP_REALDATA_B	TAG8	22.1.Numeric.1006				
	ROOT111_DISP_REALDATA_B	TAG9	22.1.Numeric.1007				
	ROOT111_DISP_REALDATA_B	TAG10	22.1.Numeric.1008				
	ROOT111_DISP_REALDATA_B	TAG11	22.1.Numeric.1009				
	ROOT111_DISP_REALDATA_B	TAG12	22.1.Numeric.1010				
	ROOT111_DISP_REALDATA_B	TAG13	22.1.Numeric.1011				
	ROOT111_DISP_REALDATA_B	TAG14	22.1.Numeric.1012				
	ROOT111_DISP_REALDATA_B	TAG15	22.1.Numeric.1013				
	ROOT111_DISP_REALDATA_B	TAG16	22.1.Numeric.1014				
	ROOT111_DISP_REALDATA_B	TAG17	22.1.Numeric.1015	Υ			
	<		>				
		导出	确定 取消				

图 23-4 修改位号名

7. 设置完成后点击 ,保存 OPC UA 驱动的配置。完成配置后,返回数据列表界面。

23.2 配置驱动位号的I/O地址

手动添加 OPC UA 驱动位号,并设置位号属性。手动添加位号的方法请详见《数据库管理软件 使用手册》或《中控数据采集器软件使用手册》。

1. OPC UA 驱动位号的"IO 地址指定"界面如下图所示。
| 选择服务 | 器: | | | | |
|---------|---|---|--|--|--|
| 5CADAOI | PCUA | | | | |
| 序号 | IO地址 | ^ | | | |
| 18 | SCADAOPCUA.Root.Objects.Server.LocalTime | | | | |
| 19 | SCADAOPCUA.Root.Objects.Server.EstimatedReturnTime | | | | |
| 20 | SCADAOPCUA.Root.Objects.Server.ServerArray | | | | |
| 21 | SCADAOPCUA.Root.Objects.Server.NamespaceArray | | | | |
| 2 | SCADAOPCUA.Root.Objects.Server.ResendData | | | | |
| 23 | SCADAOPCUA.Root.Objects.Server.ServerConfiguration | | | | |
| :4 | SCADAOPCUA, Root, Objects, Server, RequestServerStateChange | | | | |
| 25 | SCADAOPCUA.Root.Objects.Server.Namespaces | | | | |
| 26 | SCADAOPCUA, Root, Objects, Server, PublishSubscribe | | | | |
| 27 | SCADAOPCUA, Root, Objects, Server, GetMonitoredItems | | | | |
| 28 | SCADAOPCUA, Root, Objects, Server, ServerDiagnostics | | | | |
| 29 | SCADAOPCUA.Root.Objects.Server.ServerCapabilities | | | | |
| 30 | SCADAOPCUA.Root.Objects.Server.ServerStatus | | | | |
| 31 | SCADAOPCUA.Root.Objects.Server.VendorServerInfo | | | | |
| 32 | SCADAOPCUA.Root.Objects.Server.SetSubscriptionDurable | | | | |
| 33 | SCADAOPCUA, Root, Objects, Server, Dictionaries | | | | |
| 34 | SCADAOPCUA, Root, Objects, Server, ServerRedundancy | | | | |
| 35 | SCADAOPCUA, Root, Objects, Scada, FLOAT001 | | | | |
| 36 | SCADAOPCUA, Root, Objects, Scada, FLOAT002 | | | | |
| 37 | SCADAOPCUA, Root, Objects, Scada, FLOAT003 | | | | |
| 38 | SCADAOPCUA.Root.Objects.Scada.INT1 | | | | |
| 39 | SCADAOPCUA, Root, Objects, Scada, INT2 | | | | |
| 40 | SCADAOPCUA, Root, Objects, Scada, INT3 | | | | |
| 41 | SCADAOPCUA, Root, Objects, Scada, BOOL001 | | | | |
| 42 | SCADAOPCUA, Root, Objects, Scada, BOOL002 | | | | |
| 10 | SCADAODCUA Root Objects Scoda ELOATAD4 | × | | | |
| C | | > | | | |
| 前选中 | 的IO地址: | | | | |
| | PCUA.Root.Objects.Scada.INT1 | | | | |

图 23-5 IO 地址设置(OPC UA 驱动)

- 选择一个路径,作为位号的 IO 地址,然后单击"确定"。软件会根据您选择的 IO 地址,识别位 号的数据类型和属性。此时,请在位号属性设置对话框中检查软件识别得到的位号数据类型是 否和 OPC UA 服务器端的位号类型相同。如果不相同,请手动修改。
 - 如果识别到的数据类型是 BOOL、UINT16、UINT32、UINT64、INT16、INT32、INT64、 FLOAT、DOUBLE 或 STRING 的其中一种,则显示为对应的数据类型。
 - 如果识别到的数据类型不是这些类型的任意一种,则软件会将数据类型转换为 STRING。
- 3. 位号属性完成后,单击"确定",返回至如下图所示的软件主界面。

位号名	类型	描述	I/O驱动	I/O地址
在此处输入文… 🍸	在 マ	在 ア	在此处输入… 🍸	在此处输入文字 🛛 🍸
OPCUA_TAG	开关量		OPC UA	OPCUA.0.String.BOOL001
OPCUA_TAG	整型		OPC UA	OPCUA.0.String.INT001
OPCUA_TAG	实型		OPC UA	OPCUA.0.String.REAL001
TAG001	实型		OPC UA	OPCUA.0.Numeric.91

图 23-6 成功添加 OPC UA 位号

如图 23-6 所示, OPC UA位号的实时数据I/O地址采用"服务器名.节点路径"的形式。

24 MQTT驱动

通过 MQTT (Message Queuing Telemetry Transport, 消息队列遥测传输协议) 驱动,当前客户端可以连接 MQTT 服务 (MQTT Broker 代理服务器),用于接收其他客户端发布到 MQTT 服务端的实时消息。

用户可通过配置主题名向服务端订阅相关主题,并通过配置位号显示消息的指定数据。

24.1 配置驱动

添加 MQTT 驱动后,可以通过以下步骤配置 MQTT 驱动。

1. MQTT驱动配置界面如图 24-1 所示,显示驱动名称、厂商描述、组态中客户端和Topic的数量。

MQTT 驱动配置 X							
文件(F) 编辑(E)							
🖬 🏓 📇 🗡							
MQTT	□ 驱动						
	名称	MQTT					
	描述	SUPCON					
	□ 基本信息						
	客户端数	0					
	Topic数	0					

图 24-1 MQTT 驱动配置界面

2. 左键单击 建按钮添加新的客户端 (Client), 数量上限为 10 个。客户端的属性配置界面如 图 24-2 所示, 按表 24-1 的说明配置参数。

MQTT 驱动配置			×
文件(F) 编辑(E)			
🖬 👂 👗 🗡			
⊡	□ 基本信息		
Client1	Topic数里	0	
Cilenci	□ 本地接口		
	IPv4地址	0.0.0:0	
	用户名		
	密码		
	保活时间(s)	60	
	清理会话	0	

图 24-2 配置 Client 属性参数

表 24-1 客户端参数说明

分类	参数名	含义	说明	
基 本 信息	Topic 数量	客户端下已添加的 Topic 数量	根据已添加的 Topic 数量自动填写,不能修改	
本 地 接口	IPv4 地址	用于订阅主题通信的服务端的 IP (IPv4 地址)和端口	填写格式为"IP:端口号",默认端口号为1883	
	用户名	客户端连接 MQTT 服务的用户名	仅当 MQTT 服务已设置用户名和密码时需要填	
	密码	客户端连接 MQTT 服务所用的密码	写。如果服务端没有配置,客户端可以匿名登录	
	保活时间(s)	在指定的时间间隔里,如果客户端 和服务端之间没有数据交互,则默 认客户端已下线,断开连接	单位为秒(s),默认为60,可设置范围为5~65535	
	用于客户端与服务端断开连接后, 清理会话 服务端是否保存会话信息给下一次 会话使用		通过下拉菜单选择:0(保存)或1(不保存)	

选中一个客户端,左键单击选按钮,添加一个Topic,如图 24-3 所示,数量上限为 10 个。配置驱动向服务端订阅的主题,支持字母和数字。
 配置主题后,驱动将会向MQTT服务端订阅该主题。若有其它客户端发布相同主题的消息至MQTT服务端,服务端会将消息转发给所有订阅该主题的客户端。

24.2 配置驱动位号的I/O地址

配置 MQTT 驱动后,可以手动添加 MQTT 位号。手动添加位号的方法请详见《数据库管理软件 使用手册》或《中控数据采集器软件使用手册》,本小节仅描述如何配置位号的 IO 地址。 1. MQTT 驱动位号的 "IO 地址指定"界面如下图所示。

IO地址选择		\times
客户端选择 主题:	_	
信息 类型:		
数据地址:		
	确定取消	

图 24-4 IO 地址设置(MQTT 驱动)

- 2. 根据以下说明,配置 I/O 地址的参数。
 - 通过下拉框依次选择客户端和主题。
 - 类型:通过下拉框选择位号的数据类型。可选类型请参见"参数说明"。
 - 数据地址: 第三方消息的数据地址,不支持 UTF-16 (小端字节序)格式,举例如表 24-2 所示。第三方消息(JSON有效负载)的内容支持 UTF-8 和 UTF-16 (小端字节序)格式。

14 = . = Math. G. THOTT 1 11	表	24-2	数据地址配置举例
------------------------------	---	------	----------

类别	负载示例	负载数据地址	负载数据的值
	{ "s"·4	S	4
单 级 JSON	"t":"2017-09-29T19:52:19Z",	t	2017-09-29T19:52:19Z
	"tempint":67.1 }	tempint	67.1

类别	负载示例	负载数据地址	负载数据的值
	{ "Module":	Module.EquipId	E12
多 级 JSON	{ "EquipId":"E12", "CarrierId": "C12",	Module.CarrierId	C12
	"EventTime": "12322131" } }	Module.EventTime	12322131
	{	FormatId	DeviceState
	"ApiVersion": 1, "UserSwitch": "State:Bup"	ApiVerion	1
	"Leds":[{ "Name": "IO"	UserSwitch	State:Run
单 级	"State": "Blinking"	Leds[0].Name	Ю
平 级 JSON 数组	<pre> { "Name": "SYS", } </pre>	Leds[0].State	Blinking
	"State": "On"	Leds[1].Name	SYS
	{ "Name": "USR",	Leds[1].State	On
	"State": "On" }]	Leds[2].Name	USR
	}	Leds[2].State	On
	{	name	John
	"name": "John",	age	30
	"age": 30, "cars": [{	cars[0].name	Ford
	"name": "Ford",	cars[0].models[0]	Fiesta
	"models": ["Fiesta", "Focus", "Mustang"]	cars[0].models[1]	Focus
多级	},	cars[0].models[2]	Mustang
JSON 数组	{ "name": "BMW".	cars[1].name	BMW
	"models": ["320", "X3", "X5"]	cars[1].models[0]	320
	},	cars[1].models[1]	X3
	{ "name": "Fiat"	cars[1].models[2]	X5
	"models": ["500", "Panda"]	cars[2].name	Fiat
	}]	cars[2].models[0]	500
	}	cars[2].models[1]	Panda

3. 位号属性完成后,单击"确定",返回如下图所示的软件主界面,位号的 I/O 地址形式为"客户端名.主题名.负载数据地址.数据类型"。

位号名		类型		描述		I/O驱动		I/O地址	
在此处输	Y	在此…	Y	在此…	7	在此处…	Y	在此处输入文字	Y
MQTT001		实型				MQTT		Client1.Topic2.tempint	t.FLOAT

图 24-5 成功添加 MQTT 位号

24.3 参数说明

MQTT位号类型的详细描述如表 24-3 所示。

类型	描述	字节数	取值范围
BOOL	布尔型	1	0或1
DOUBLE	双精度浮点型	8	-1.79E+ 308 ~ 1.79E+308
FLOAT	单精度浮点型	4	-3.40E+38 ~ 3.40E+38
SHORT	短整型	2	-32768 ~ 32767
INT	整型	4	-2,147,483,648 ~ 2,147,483,647
LONG	长整型	4	-2,147,483,648 ~ 2,147,483,647
LONGLONG	长长整型	8	$-2^{64} \sim 2^{63} - 1$
USHORT	无符号短整型	2	0 ~ 65535
UINT	无符号整型	4	0 ~ 4294967295
ULONG	无符号长整型	4	0 ~ 4294967295
ULONGLONG	无符号长长整型	8	0 ~ 18,446,744,073,709,551,615
STRING	字符串型	-	支持英文字符串

表 24-3 位号类型详细描述表

25 DLT645_2007 驱动

通过 DLT645_2007 驱动,调用方可接入支持 DL/T 645-2007 多功能电能表通信规约(以下简称 为 DL/T 645 标准)的设备节点,读取多功能电能表的电能数据。本驱动支持断线重连。

25.1 配置驱动

添加 DLT645_2007 驱动后,可以通过以下步骤配置驱动。 1. 驱动配置界面如下图所示,显示驱动名称和描述。

· · · · · · · · · · · · · · · · · · ·		
DLT645_2007		
文件(F) 编辑(E)		
🖬 👂 👗 🗡		
🖃 📥 DLT645_2007	□驱动	
🛄 🗍 Channel1	名称	DLT645_2007
ge channen	描述	DLT645_2007多功能电能表通信协议驱动

图 25-1 驱动配置界面

2. 左键单击⁹按钮或单击菜单栏【编辑/添加通道】,或者选择已存在的 Channel1,右侧显示通道属 性配置区,如下图所示。

□ ▲ DLT645_2007	Ξ	通道属性		
		通道名	Channel1	
		描述		
		通信方式	TCP	
		设备数量	0	
		通道设置		
		服务器IP:端口	172.30.11.181:8009	

图 25-2 通道参数配置

3. 按下表配置通道参数。

表 25-1 通道参数说明

参数名	含义	说明
通道名	通道名称	 通道名由英文字母、数字、-、_组成,最长为64个字节 通道名称不能重复
描述	通道描述信息	最长为 64 个字节
通信方式	和下级节点的通信方式	可选择 TCP 或 COM
设备数量	通道下已添加的设备数量	根据已添加的设备数量自动填写,不能修改
通信方式为 TCP		
服务器 IP:端口	串口服务器的 IP 地址	IP 为点分十进制形式,端口号默认为 8009,可修改
通信方式为 COM		
串口 ID	通道占用的串口 ID	整数形式,可设置范围为1-256
波特率	通道工作的波特率	在下拉列表中选择 110、150、300、600、1200、2400、4800、 9600、19200、38400、57600 或 115200
校验位	端口的错误检查类型	 可选参数包括: Odd,表示如果要使数据位中1的个数为奇数,应添加奇偶校验位。 Even,表示如果要使数据位中1的个数为偶数,则奇偶校验位应置为1。 None,表示从此端口发送的数据位不添加奇偶校验位。
数据位	在传输和接受每个字符时 使用的数据位数	在下拉列表中选择7或8

参数名	含义	说明
停止位	传输每个字符之间的时间,按位/秒测量时间	在下拉列表中选择1或2

 选择一个通道,左键单击送按钮或单击菜单栏【编辑/添加设备】,右侧显示设备属性配置区, 如下图所示。

		基本信息		
🗄 🛑 Channel1		名称	Device1	
		扫描周期(ms)	1000	
		超时(ms)	10000	
		重连周期(ms)	5000	
		设备地址	00000000001	
		操作员		
		密码		
		密码权限		
		物理设备		
		启用	是	

图 25-3 数据块配置界面

5. 按下表配置设备参数。

表 25-2 设备参数说明

参数名	含义	说明
名称	设备名称	名称可包含字母、数字、短横杠(-)或下划线(_), 最长 32 字符,不能重复
扫描周期 (ms)	读取数据的周期	单位:毫秒,取值范围 300~86400000,默认为 1000
超时 (ms)	主站发送命令后到命令响应之间 的最长等待时间	单位:毫秒,取值范围 300~86400000,默认为 10000
重连周期(ms)	与从站连接失败后到下一次重连 的时间	单位:毫秒,取值范围 1000~86400000,默认为 5000
设备地址	设备在通信网络中的唯一标识	12 位数字,前2位代表厂商,后10位是设备编号
操作员	写操作附带的操作员信息	 写值时需配置,仅读值可以留空 8位十六进制数字,A-F 仅支持大写字母输入
密码	写操作需要校验的密码	 写值时需配置,仅读值可以留空 6位十六进制数字,A-F 仅支持大写字母输入
密码权限	密码对应的权限	 写值时需配置,仅读值可以留空 数字越小代表权限越高,可选参数包括00~09
物理设备		
启用	是否启用物理设备	可选择是(启用)或否(禁用)

6. 完成驱动组态后,点击 🖬 保存。

25.2 配置驱动位号的I/O地址

配置 DLT645_2007 驱动后,可以手动添加驱动位号,支持的位号类型包括布尔型、整型、浮点型和字符串。手动添加位号的方法请详见《数据库管理软件使用手册》或《中控数据采集器软件使用手册》,本小节仅描述如何配置位号的 IO 地址。

25.2.1 配置步骤

1. DLT645_2007 驱动位号的"IO 地址指定"界面如下图所示。

10地址选	圣					×
──块选择~ 通道:	Channel1 💌	1	- 信息	电能量数据		•
			数据子类型:	(当前)组合有功电能		•
设备:	Device1		数据项:	(当前)组合有功总电能		•
					确认	取消

图 25-4 IO 地址设置(DLT645_2007 驱动)

 I/O 地址添加规则为"设备名.数据标识编码.数据子类型.数据项",其中数据标识编码、数据子 类型和数据项的编码规则符合 DL/T 645 标准的要求。
 例如,IO 地址为 Device1.1.0000FF00.01,其中 Device1 为设备名,1 为电能量数据,0000FF00

表示(当前)组合有功电能数据块,01表示(当前)组合有功总电能在数据块中的位置。

参数名	含义	说明
通道	组态中添加的通道 ID	在下拉框中选择
设备	组态中添加的设备 ID	在下拉框中选择
数据标识编码	DL/T 645 标准定义的数据标识 编码	在下拉框中选择: 1-电能量数据; 2-最大需量数据; 3-最大需量发生时间 数据; 4-变量数据; 5-事件记录数据; 6-参变量数据; 7-冻结数据; 8-负荷记录数据
数据子类型	选择数据标识编码后可选择的 数据子类型	在下拉框中选择,编码符合 DL/T 645 标准要求
数据项	数据在数据块中的序号	在下拉框中选择;如果没有使用数据块,序号默认为01

表 25-3 位号添加规则表

25.2.2 自定义参数

注意:

● 修改配置文件前,建议先备份文件。

• 仅能添加事件记录数据和冻结数据的项,请勿修改本节中未提及的参数!

如果驱动位号的 IO 地址设置界面中的信息不能满足现场实际要求,请联系中控工程师添加配置,或在中控工程师指导下补充参数,步骤如下:

1) 在驱动安装目录下找到 point_chs.xml,使用记事本软件或编辑软件打开。XML 文件的默认 路径为 C:\Program Files (x86)\Common Files\SUPCON\Shared\IODrivers\DLT645_2007。 打开文件后,您可以发现配置文件的参数和 IO 地址设置项存在对应关系,如下图所示:

图 25-5 设置项和参数对应关系

2) 新增项:复制、粘贴一行现有参数项,然后修改为需要的新增项。参数说明如下表所示。 参数项的格式为: <参数名 属性 1="值 1"属性 2="值 2" ……属性 n="值 n"/>

表 25-4 新增参数的属性说明

属性	属性说明	配置要求
id	"IO 地址选择"对话框中可选项的顺序	根据项的数量,选择两位数字或三位数字
dataMask	数据子类型的编码	根据 DL/T 645 标准填写
desc	"IO 地址选择"对话框中可选项的内容	根据 DL/T 645 标准填写
dataType	数据类型	根据实际的数据内容,填写 int、float、time、string 或 double
dataLength	数据长度	根据 DL/T 645 标准填写数据类型的对应长度
unit	小数位数	 Int、time: 1 float、double: 一位小数填 0.1,两位小数填 0.01,以此类推 string: 留空(英文引号间输入1个半角空格)
timeFormat	事件类型的时间格式	根据 DL/T 645 标准填写,没有则留空
trailCharCount	 id="01"时, trailCharCount =0 trailCharCount = 2 × 上一条数据的 	dataLength + 上一条数据的 trailCharCount

3) 完成配置后,保存并关闭文件。

4) 重启添加驱动的软件,继续配置驱动或位号。

25.2.3 配置结果

位号属性完成后,单击"确定",返回至如下图所示的软件主界面。

位号名		类型		1/031図动		I/O地址	
在此处输…	Y	在此	7	在此处输入	Y	在此处输入文字	Y
DLT001		整型	_	DLT645_2007		Device1.1.0000FF0	0.01

图 25-6 成功添加位号

26 位号过滤

驱动配置界面中,驱动位号列表支持位号过滤功能,每列信息过滤条件做"与"操作,即过滤 的后的位号信息应满足所有过滤条件。

操作方法如下:

方法一:一般情况下,如下图所示,在过滤项中输入过滤的内容,再单击 21即可。

图 26-1 位号过滤

方法二: 某些特殊的信息项,还可直接单击 **了**,在弹出的过滤界面中设置过滤内容。如第一列 选择项,弹出以下配置界面,可设置已选择、未选择或所有情况。

位号过虚	×
过滤条件:	1
□ 已选择	
□ 未选择	
通认 取消	

图 26-2 IO 地址的过滤配置界面

E)

目前只有首列过滤支持方法二,但请以实际软件为准。若单击 了后没有弹出过滤配置界面,则说明该位号信息项只支持以方法一的方式进行过滤。

27 资料版本说明

提示:

资料版本号	适用软件版本	更改说明
V1.4 (20221220)	InPlant SCADA V5.50.00.00 InPlant Collector V3.30.01.00	 修改 Modbus RTU 驱动、Modbus TCP 驱动、GCS 驱动、G5Pro 驱动、TCS-900 驱动、Trusted Modbus TCP 驱动、ABCONTROLLOGIX 驱动和 SiemensPLCS7CommDriver 驱动的说明 新增 MELSEC 驱动和 TCS-500 驱动
V1.5 (20230411)	InPlant SCADA V5.50.01.00 InPlant Collector V3.30.03.00	 SiemensPLCS7CommDriver 驱动改名为 Siemens S7 驱动,修改说明的说明 新增 OPC UA 驱动的说明
V1.6 (20230629)	InPlant SCADA V5.50.02.00 InPlant Collector V3.30.06.00	修改 Mdobus TCP 和 Trusted Modbus TCP 驱动说明,新增 MQTT 驱动说明
V1.7 (20231122)	InPlant SCADA V5.50.03.00 InPlant Collector V3.30.07.00	 Modbus RTU 驱动通道属性增加"轮询之间的延迟" 参数 Modbus TCP 驱动设备参数新增"首字为低、首双字 为低"参数,新增数据字节序说明 Siemens S7 驱动位号添加规则表新增"读取长度" 参数 Modbus RTU、Modbus TCP、MELSEC 驱动更新 REAL 和 LREAL 数据类型的取值范围 新增 DLT645_2007 驱动说明 更新截图

表 27-1 版本升级更改一览表